شنبه تا پنجشنبه : 17 - 8
تهران - شهرک صنعتی باباسلمان
شهریار، شهرک صنعتی باباسلمان، خیابان صنعت

عنوان تست

تضیح عننوان

×

هشدار

JUser: :_بارگذاری :نمی توان کاربر را با این شناسه بارگذاری کرد: 63

تئوری فسفاته کردن فلزات قبل از شکل دهی

5 . 4 فسفاته کردن به منظور تسهیل فرم دادن سردفلزات

1 . 5 . 4 نگاه کلی

استفاده از روش فسفات کردن برای تسهیل فرم دادن سردفلزات یک کشفی توسط سینجر در سال 1937 باز می گردد . در این پتنت آلمانی به شماره ثبت اختراع 673405 ، سینجر استفاده از لایه های کریستالیزه شده چگال چسبیده ه به هم اکسیدها یا نمک هایی را برای روکش کردن آهن یا فولاد قبل از انجام عملیات فرم دادن پیشنهاد داد . هدف ، تشکل یک ساختار کریستالی چسبیده به پایه فلزی ، از طریق یک واکنش شیمیایی بود ، همان طور که در روش فسفات دار کردن نیز این هدف دنبال می شود . سینجر متوجه شد که چنین لایه های تشکیل شده از مواد معدنی ، با این مقدار سختی و مقاومت در مقابل فشار های بالا ، فاصله مناسبی بین ابزارمورد استفاده و فلز در حال فرم گرفتن ایجاد می کند . از آن جایی که خاصیت چسبندگی آن ها حتی در صورت کشیده شدن نیز به خوبی حفظ می شود ، می توانند برای تسهیل تغییر شکل های شدید و مکرر استفاده شوند .

فواید استفاده ار روکش فسفات در مقابل مواد استفاده شده در گذشته ، مثل روکش های سرب ، عمدتا اقتصادی هستند و همچنین می توان آن ها را به راحتی بعد از عملیات فرم دادن ، از طریق یک حمام اسید معدنی از فلز جدا کرد . استفاده از روکش های هیدروکسید آهن که گاهی در گذشته انجام می گرفتند ، از طریق زنگ زدن قطعه چس از جدا کردن آن انجام می شد . این نوع روکش ها به علت چسبندگی کم و حالت پودری و گسسته شان فقط فلزات نجیب را قادر به تغییر شکل می کردند .

در آلمان ، در زمان جنگ جهانی دوم ، فسفات دار کردن برای شکل دادن آهن و فولاد سرد به کار برده می شد . همراه با شرایط موجود در آن زمان ، این روش برای صنایع تولید مهمات به کار برده می شد ، برای مثال در سال 1944 اهمیت فسفات دار کردن به عنوان یک چسبنده برای شکل دادن فلزات سرد بسیار بیشتر از کاربرد آن به عنوان یک سد در مقابل خوردگی تلقی می شد . در دهه 1960 اهمیت این دو کاربرد فسفات دار کردن تقریبا یکسان شد . با این حال ، در سال های اخیر ، در نتیجه افزایش شدید تولیدات صنایعی چون خودروسازی ، نقش اساسی فسفات دار کردن برای مقاومت در برابر خوردگی به عنوان یک پیش رنگ می باشد ، که باعث کاهش اهمیت آن در فرم دادن فلزات سرد شده است .

در ایالت متحده آمریکا و انگلستان فواید فسفات دار کردنبرای فرم دادن فلزات سرد ، بعد از اتمام جنگ روشن شد . با این حال به سرعت پیشرفت کرد و امروزه در اکثر کشورهای صنعتی و پیشرفته به عنوان سهل کننده شکل دادن به فلزات سرد استفاده می شود . اساسی ترین کاربرد آن شامل تولید سیم ها و لوله های فولاد سردمی شود . پرس کردن مداوم فولاد سرد فقط از طریق فسفات دار کردن امکان پذیر است . در این فرایند و تمام دیگر زمینه های شکل دادن سرد و کشیدن سرد ، سطوح فسفات دار شده بیشترین سرعت تغییر شکل را نتیجه می دهند و در نتیجه از لحاظ اقتصادی فرایند را به صرفه می کنند . فایده دیگر فسفات دار کردن مشخصا افزایش سرعت امکان کشیدن فولاد برای تولید لوله و سیم و در نتیجه صرفه جویی اقتصادی است . سرعت های بالای 100 m/minدر صنایع تولید لوله فولادی و1000 m/minبرای تولید سیم دیده می شود .

روش فسفات دار کردن هیچ مشکلی برای هیچ نوع از فولادهای کربنی موجود در بازار ایجاد نمی کند ، همچنین هیچ مشکلی برای فولاد کم آلیاژ نیز ایجاد نمی شود . اجزا آلیاژ تا 3%نیکل ، 3%کروم ، 2%مولیبدینیوم ، یا 4%سیسلیسم با فرایند روکش دار کردن تداخلی ندارند . با این حال فولادهای پر آلیاژتر مثل بیش از 8%کروم نمی توانند فسفات دار شوند ، چرا که فسفریک اسید نمی تواند واکنش لایه برداری اولیه را که برای انجام فرایند فسفات دار کردن لازم است انجام دهد . برای این نوع فولاد های پرآلیاژ ، فسفات دار کردن توسط فرایندهای دیگر جایگزین می شود ، مثل فرایند هایی بر پایه اگزالیک اسید ، که در آن ها سرعت حمله به فولاد آلیاژ بیشتر است .

1 . 1 . 5 . 4 تاثیر اصطکاک در فرم دادن سرد

بازده فرم دهی سرد آسان و از طریق فسفات دار کردن عمدتا به اصطکاک کاهش یافته حین انجام فرایند بستگی دارد . بسته به نوع فرم دهی ، انواع مختلف نیروهای اصطکاک خارجی وجود دارند . با وجود این ، می توان فرض کرد که تقریبا 50%انرژی مورد نیاز فرایند صرف غلبه بر نیروهای اصطکاک موجود می شود . . اثرات همراه فسفات دار کردن و روغن کاری این درصد را به میزان قابل توجهی کاهش داده و باعث طرفه جویی در انرژی می شود . در عین حال ، کاهش سطح مقطع ابزار و آبکاری مناسب روی قطعه نیز باعث کاهش مصرف انرژی می شود .

اثر این اصطکاک بر روی فرم دادن سرد توسط نماد - ضریب اصطکاک ، نشان داده می شود . در مقابل اصطکاک خشک ، که لغزیدن یک سطح خشک بدون هیچ لایه واسطه روی سطح خشک دیگری تعریف می شود ، شرایط موجود در فرم دهی سرد باعث ایجاد اصطکاک های محدودکننده یا آمیخته می شود . ضریب اصطکاک اینجا بین 0 . 02تا 0 . 15قرار دارد . اصطکاک محدودکننده زمانی به وجود می آید که صفحات لغزنده توسط یک لایه نازک ، معمولا تک مولکولی از چرب کننده  جدا می شوند . یکی از ویژگی های اصطکاک محدودکننده این است که که ضریب اصطکاک آن با افزایش سرعت لغزیدن سریعا کاهش می یابد . در مواردی که سرعت آنقدر بالاست که ضریب اصطکاک دیگر وابستگی قابل توجهی به سرعت ندارد ، اصطکاک هیدرودینامیک ظاهر می شود . . در این حالت ، هر دو سطح لغزنده به طور کامل توسط لایه چرب کننده ( روغن ) از هم جدا شده اند . اصطکاک مشاهده شده تنها به دلیل اصطکاک داخلی لایه روغن وجود دارد و مقدار آن بسیار کم است ، تا آن جایی که ضرایب اصطکاک در حدود 0.001 تا 0.01 قرار دارند .

در کشش سرد سرعت بالا برای تولید سیم و لوله ، اصطکاک های محدودکنند و هیدرودینامیک وجود دارند . این حالت را" اصطکاک آمیخته " میگویند و فرض می شود که در این حالت ، به دلایل مشخص تجربی ، لایه روغن به صورت موضعی سوراخ می شود .

شکل 86-رابطه بین ضریب اصطکاک ، سرعت نسبی لغزش و فشار سطحی بر نوع اصطکاک موجود

تحت شرایط موجود در فرم دهی سرد ، حتی زمانی که از چرب کننده ها استفاده می شود ، همواره احتمال تماس فلز-فلز بین ابزار و قطعه ، بسته به نوع دقیق فرایند فرم دهی ، وجود دارد . در نتیجه فشار و دمای بالا ، ممکن است لایه روغن شکاف بخورد ، که احتمالا به دلیل باز شدن سطح فلز اتفاق می افتد . در این نقاط ، حمله های فرساینده مشاهده می شود ، که در این حالت فلز در یک محل پاره شده و ذرات جدا شده در نقطه مجاور به سطح قطعه فشرده می شوند . ابزار پرس ضربه می خورد ، اصطکاک افزایش یافته و سرعت فرسایش ابزارآلات زیاد می شود . افزودن فیلترهای جامد به روغن ، مثل گچ ، میکا ، گرافیت یا مولیبدینیوم دی سولفید فقط تا حدی در جلوگیری از وقوع تماس فلز-فلز موثر است . عیب چنین افزودنی هایی ، امکان فرو رفتنشان در سطح فلز است که به تجربه ثابت شده که جدا کردنشان بسیار مشکل خواهد بود . 175 به منظور جلوگیری از شکاف خوردن لایه روغن و افزایش میزان اثربخشی اصطکاک آمیخته ، روغن های استفاده شده شامل چندین افزودنی اسید چرب قطبی و-زمانی که فشارهای بسیار بالا استفاده می شود ، افزودنی های فشار بالا می شود . با این حال استفاده از اسید چرب ها ، واکنش شیمیایی گروه های قطبی اسیدها ، کلر ، گوگرد یا فسفر حاوی افزودنی های فشار بالا ( افزودنی های EP)  ، باعث افزایش جذب سطحی می شود ، این واکنش ها فقط در دماها و فشار های بسیار بالا به طور کامل اثربخش هستند . 

روکش های فسفاته در اصل طوری طراحی می شوند که توانایی عملکرد در کنار انواع روغن ها را داشته باشند . در جایی که این روکش هاای معدنیکریستالی استفاده شده اند ، فاصله بین قطعه و ابزار پرس در قسمتی که اصطکاک محدودکننده و آمیخته وجود دارد ، ایجاد می کنند ، در نتیجه اثر فرساینده را که عمدتا به دلیل جوش دادن سرد قطعات اتفاق می افتد ، کاهش می دهد . اگر به دلیل اصطکاک خشک ، لایه روغن درست عمل نکند ، با استفاده از روکش فسفات احتمال حملات فرساینده به شدت کاهش می یابدودر این حالت روکش فسفات به عنوان یک لایه محافظ اورژانسی عمل می کند .

در انواع مختلف فرم دهی های سرد ، اصطکاک به وسیله روکش های فسفاتی به مقدار قابل توجهی کاهش می یابد . در اندازه گیری های تحت شرایط متفاوت قابل مقایسه ، ضریب اصطکاک برای سطوح روی فسفات دار شده همراه روغن امولسیونی در فشار 1440 N/mm2از 0.70به 0.043کاهش یافت ( در مقایسه با سطوح فسفاته نشده ) . مقادیر به دست آمده برای منگنز و آهن فسفاته شده به اندازه مقادیر اندازه گیری شده برای روی مطلوب نبودند . حتی در حالت های خاص که به علت پارگی لایه روغن ، اصطکاک خشک ایجاد می شود ، سطوح فسفاته شده منجر به اصطکاک کمتر در مقایسه با تماس مستقیم فلز-فلز می گردد . 

علاوه بر عملکرد به عنوان یک رابط فاصله انداز در فرم دهی سرد ، نباید از اثر فسفاته کردن روی عوی عملکرد روغن های مورد استفاده چشم پوشی کرد . سطح کریستالی و در نتیجه زبر فلز فسفاته شده بهترین پایه ممکن برای نگه داری روغن ها روی فلز را فراهم می آورد . در نتیجه سطوح فسفاته شده چندین برابر یک سطح فسفاته نشده روغن جذب می کنن ( شکل 54 ) . مقدار موثر روغن به میزان زیادی مستقل از ضخامت روکش فسفات است . در یک مقایسه انجام شده ، با استفاده از یک نوع روغن یکسان ، ضخامت روغن روی فلز فسفاته شده 2.3g/m2و 1.0 g/m2بر سطوح فسفاته نشده بوده است . روغن جمع آوری شده از روی سطح فسفاته شده 7 تا 13 برابر سطح فسفاته نشده بوده است . چرب کننده های جامد مثل گرافیت و مولیبدینیوم دی سولفید نیز به راحتی توسط ساختار متخلخل روکش فسفات دوباره جمع آوری می شوند ، در نتیجه می توانند به نحو بهینه مورد استفاده قرار گیرند .

در عمل ، از امکان کاربرد چرب کننده های صابونی در پیوستگی با سطوح فسفاته شده استفاده فراوانی می شود . سولفات روی مصنوعی می تواند به صورت ناقص با صابون های فلزات قلیایی واکنش داده و صابون روی بسیار سریع الثری تولید کند . ترشری روی فسفات روی سطح به شکل زیر واکنش می دهد:

 

Zn3 ( PO4 ) 2        +    6 CH3 ( CH2 ) x . CO2Na            3 Zn ( CH3 ( CH2 ) x . CO2 ) 2     +      2 NaPO4      ( 62 )

          ( ترشری سدیم سولفات )         ( صابون روی )        ( صابون سدیم )     ( ترشری روی فسفات )

واکنش از طریق غوطه ور کردن قطعه در حمام صابونی کننده در 70-80درجه سانتی گراد برای 2-10دقیقه صورت می گیرد . کامل ترین واکنش ، در نتیجه بهترین واکنش برای فرایند فرم دهی ، توسط چرب کننده های قابل صابونی شدن فعال شده اختصاصی ، انجام می گیرد . با غلظت 2-20%در مخزن غوطه وری ، pHحدود 9-10به دست می آید . با توجه به ضخامت روکش فسفات ، روکش های صابونی با ضخامت 5-20 g/m2تولید شده که می توانند تا 50%صابون روی باشند ( شکل 87 ) . 

شکل 87 ) تبدیل روکش روی فسفات روی فولاد( 18 g/m2) با محلول آبی صابون سدیم

3 . 1 . 5 . 4 چسبندگی و قابلیت شکل پذیری روکش های فسفات

قابلیت چسبندگی خوب روکش های فسفات که برای انجام فرایندهای سخت و چندگانه فرم دهی فلزات ضروری است ، تا اندازه ای به دلیل عمل تنظیم کردن روی سطوح زبر شده توسط فرایند لایه برداری و تا اندازه ای به علت ماهیت برآری ( رونشست ، epitaxy) رشد بلور روی سطح فلز است . در مورد فسفات روی رایج ، فولاد عمدتا توسط Zn3 ( PO4 ) 2 . 4H2O( هوپیت ) و Zn­2Fe ( PO4 ) 2 . 4H2O( فسفوفیلیت ) پوشیده می شود ( شکل 88 ) . در حین فرم دهی فلز ، دما های محلی به راحتی تا 100 درجه سانتی گراد بال رفته و حتی می توانند تا 400 الی 500 درجه سانتی گراد هم برسند . در موارد استثنایی ممکن است دماهای بالای 1000 درجه سانتی گراد نیز به صورت موقتی مشاهده شود . این چنین دماهای بالایی تاثیری روی چسبندگی و عملکرد روکش روی فسفات نمی گذارند ، در نتیجه تغییر شکل های بعدی بدون مشکل انجام می شوند . تحقیقات نشان داده است که حتی برای مدت زمان های طولانی تر حدود 15 دقیقه در محیط اکسید کننده هوای داغ در دمای 500 درجه سانتی گراد ، هیچ گونه تغییر نامطلوبی روی لایه روی فسفات دیده نمی شود ، با این حال کمی از آب بلور ازدست می رود .

شکل 88 ) سطح مقطع تنظیم روکش روی فسفات با فولاد

در حین فرم دادن فلزات ، روکش فسفات مثل یک لایه پلاستیک یا مثل رفتار یک چرب کننده جامد مانند گرافیت یا مولیبدینیوم دی سولفید ، که حرکت در جهت ساختار لایه لایه کریستال انجام می گیرد ، عمل نمی کند . میکروکریستال های فسفات میکرو سختی حدود 1300N/mm2دارند ، که تقریبا برابر با سختی فولاد پایه شان است . نشان داده شده است که در حین فرم دهی ، کریستال های فسفات در ابتدا تا حدی کوچک می شوند تا به شکل پودر در بیایند و سپس به شکل یک روکش شیشه ای در می آیند . بعد از اتمامفقط 15%فرم دهی فلز ، ساختار کریستالی فسفات توسط پراسش پرتو Xقابل تشخیص نیست .

پودر ریز تولید شده توسط فرم دهی در تماس با چرب کننده ، نوعی خمیر به وجود می آورد ، با این حال بیشتر نواحی روکش فسفات به سطح فلز چسبیده باقی می ماند . ساختار نهایی در تمام موارد ، روکشی صاف و تقریبا براق به نام "سطح آینه ای کششی فسفات" می باشد . این روکش کاملا برای فرم دهی های بعدی به عنوان یک فاصله انداز و رابط چرب کننده قابل استفاده است . به همین دلیل ، برای مثال ، سیم های فولادی می توانند تحت بیش از 15 فرایند کشش با استفاده از چنین روکشی قرار گیرند . لایه های فسفاته ای که چنین عمل می کنند ، سطح خاکستری و براق آینه ای خود را حفظ می کنند . 

4 . 5 . 1 . 4 فرایندهای فسفات دار کردن برای فرم دادن سرد فلزات

انتخاب نوع فرایند فسفاته کردن مورد استفاده با توجه به ضخامت روکش مورد نیاز ، درجه سادگی فرایند ، حداقل کردن مقدار مواد شیمیایی مورد نیاز و همچنین تعدادی فاکتور دیگر که بیشتر مربور به کاربرد منظر می شوند ، تعیین می گردد . از آن جا که هیچ قانون مشخصی برای تعیید بهترین روکش موجود برای یک نوع سردکاری خاص وجود ندارد ، معمولا احتیاج به یک سری آزمایش های مقدماتی وجود دارد . برای این کار ، فاکتورهایی از جمله نوع آماده سازی شامل لایه برداری ، نوع فولاد مورد استفاده ، اثرات موجود در فرم دهای و همچنین ، ئر بعضی موارد ، اثرات ناشی از سیستم نگه داری و فسفاته کردن باید مورد آزمایش قرار گیرند . به جز چنین موارد خاصی ، نتایج تجربی یک سری اقدامات راهبردی برای انتخاب مناسب ترین روکش فسفات برای یک فرایند دلخواه به دست داده اند .

می توان گفت رایج ترین روکش مورد استفاده در فرایندهای فرم دهی سرد ، روکش های روی فسفات هستند . با این حال ، سیستم روی-منگنز محبوبیت تازه ای برای فرایندهای اکستروژن ، فشردگی سرد و سردکشی یافته است . فرایندهای روی-کلسیم بعضی اوقات در فرایندهای اکستروژن که در آن ها لایه فسفات تقریبا به طور کامل در حین فرایند تحلیل می رود و سطح براق فلز به عنوان قطعه نهایی به جا می ماند ، انجام می شوند . برای این کاربرد ، فسفات فلز های قلیایی نیز استفاده می شوند ، که در این مورد روکش عمدتا شامل اکسید آهن و فسفات آهن می شود .

نه تنها سیستم فسفات بلکه شتابدهنده مورد استفاده نیز در کاربردهای فرم دهی فلزات باید به دقت انتخاب شوند . ای موارد نه تنها بر ضخامت روکش بلکه بر چسبندگیو ساختار کریستالی روکش نیز تاثیر می گذارند . در سیستم رایج روی فسفات ، شتابدهنده های مطلوب شامل نیترات ها ، نیتریت ها و کلرات ها می شوند .

شتابدهنده های نیترات برای تولید لایه های ضخیم روکش روی فسفاتبا وزن 10-20 g/m2استفاده می شوند . این روکش ها در جایی لازم هستند که فرم دهی های سنگین انجام می شود ، مثل اکستروژن مداوم یا نازک کردن ورق فلز . ویژگی های چنین حمام هایی غلظت و دمای بالای آن هاست ( 70-95درجه سانتی گراد ) . اکثر سیستم های روی فسفات مورد استفاده برای سردکاری از ترکیب شتابدهنده نیترات+نیتریتاستفاده می کنند و به صورت جهانی برای این کاربرد نصب شده اند . بر اساس شرایط عملکرد حمام ، روکش هایی با وزن 4-15 g/m2تولید میکنند . محدوده دمای مورد نیاز 30 تا 80 درجه سانتی گراد است که معمولا در حدود 60 تا 75 قرار دارد .

فرایند های همراه با افزودنی هایی چون فسفات های غلیظ منجر به تولید روکش های بسیار نازک می شوند . این روکش های نازک ، معمولا 1-4 g/m2، برای اکستروژن لوله های فولادی جوش خورده یا نوارهای کشش عمیق کاربرد دارند . زمانی که درفرایندهای شتاب داده شده توسط نیترات + نیتریت ، نیتریت به صورت جداگانه اضافه و بر غلظت آن نظارت شده است ، کنترل فرایند پیچیده تر گشته است . با رعایت کردن شرایط مناسب و داشتن غلظت نسبی بالا از نیترات ، حمام می تواند طوری عمل کند که نیتریت به صورت خودکار از نیترات تولید شود و به جز در ابتدای کار حمام نیازی به اضافه کردن نیتریت نیست ( شکل 89 ) .

فرایندهایی که از کلرات به عنوان شتابدهنده استفاده می کنن ، روکش هایی نسبتا نازک ولی چگال تولید می کنند که معمولا برای فرایندهای فرم دهی فلزات بسیار مناسب هستند . روکش ها معمولا وزنی در حدود 3-6 g/m2دارند . دمای مورد نیاز حمام در حدود 45 تا 85 درجه سانتی گراد است . این فرایندها به دلیل سادگی ذاتی شان معمولا برای روکش فرایندهای کشش سیم و لوله به کار می روند . 81

با استفاده از بعضی شتابدهنده ها ، به خصوص نیترات ها ، می توان حداقل مقداری از آهن حل شده در واکنش لایه برداری را به عنوان Fe(II)به حمام بازگرداند . چنین فرایندهایی ، "فرایندهای متمایل به آهن" ، منجر به کاهش تولید لجن و کاهش مقدار مواد شیمیایی مورد نیاز می شوند . تا جایی که غلظت Fe(II)با افزایش توان عملیاتی کار بالا می رود ، اقدام های معمول برای کنترل آن باید صورت بگیرند ، زمانی که غلظت Fe(II)به درجه ای می رسد که بر تولید روکش و ویژگی هایش به عنوان سهل کننده فرم دهی فلزات تاثیر می گذارد . چنین مقادیری شامل تحلیل و جایگزینی حمام فسفات ، یا اکسیداسیون ناقص Fe(II)به Fe(III)می شود ، که Fe(III)به صورت یک لجن فسفات کم محلول رسوب می کند . عوامل اکسنده مناسب هوا و کلرات ها هستند . با استفاده از افزودنی های حمام اختصاصی می توان چنین حمام های آهنی را در دمای 40 تا 60 درجه سانتی گراد به کار انداخت . این عمل نه تنها باعث صرفه جویی در انرژی می شود بلکه منجر به کاهش تولید لایه جامد بر دیواره های مخزن و سطوح هیتر می گردد .

شکل 89-اثر اکسنده های مختلف بر رشد لایه روی سولفات

در انتخاب مناسب ترین فرایند فسفاته کردن ، اولین فاکتور مورد بررسی نوع روکش مورد نیاز است . فرم دهی های سخت و متوالی نیازمند روکش های ضخیم هستند ، در حالی که فرم دهی هایی که ساده تر انجام می شوند نیازی به روکش های ضضخیم ندارند . ضخامت مورد نیاز روکش بر این اساس تخمین زده می شود که بعد از اتمام کار مقدار کافی از روکش روی قطعه باقی بماند تا بتواند از قطعه و ابزار حفاظت کند . در نتیجه ، در یک فرایند چند مرحله ای برای تولید سیم ، شرایطی انتخاب شده است که پس از بیرون آمدن از آخرین فرم دهی ، روکشی با ضخامت بیشتر از 0.5-1 g/m2روی قطعه باقی مانده باشد . از سوی دیگر ، نیازی به روکش های ضخیم بی دلیل که باعث افزایش مصرف انرژی می شود ، نیست . به طور کلی روکش های ضخیم تر ساختارهای بلوری درشت تری را نتیجه می دهند .

برای مثال در کشش جهت تولید سیم ، استفاده از ضخیم ترین روکش های فسفات ، می تواند منجر به screamingدر حین گذار از اولین مرحله استراحت شود . در مقابل این اتفاق ، زمانی استفاده از روکش روکش های ضخیم اولیه مطلوب است که نیاز داشته باشیم یک روکش بعد از عملیات مکانیکی ، به عنوان یک کمک کننده به فرم دهی های بعدی ، سردکاری یا فرایندهای دیگر ، باقی بماند .

ماهیت و نوع آماده سازی قبل از فسفات دار کردن نیز تاثیر زیادی بر ساختار و ضخامت روکش فسفات می گذارد . در اقدامات عادی برای سردکاری از حمام سولفوریک اسید یا هیدروکلریک اسید برای خواباندن قطعه استفاده می شود که باعث تولید روکشی با ساختار بلورهای درشت تر و ضخیم تر می گردد . در مواردی که نیاز باشد ، می توان این اثرات را از طریق شستشو با یک محلول نمک فلزی ، به خصوص نمک های تیتانیوم ، خنثی کرد . این عمل سرعت هسته گذاری را تحت تاثیر قراردارده و باعثرشد بلورهای بهتر می گردد و روشی رایج برای فسفاته کردن لوله ها و سیم ها می باشد .

در عمل ، زمانغوطه ور کردن در حمام های فسفات دار کردن می تواند متفاوت باشد تا ضخامت های متفاوتی با توجه به نیاز کاربر به دست بدهد . در نتیجه لوله های فولادی برای کشش یک مرحله به مدت 3 دقیقه غوطه ور می شوند ، در حالی که قطعاتی که برای اکستروژن های 2 یا 3 مرحله ای آماده می شوند ، به مدت 10 دقیقه در حمام غوطه ور می شوند که ضخامت هایی در محدوده 6-8 g/m2می دهند . نمی توان محدوده بزرگتری برای ضخامت روکش به دست آورد . چرا که غوطه ور شدن کم تر از 3 دقیقه تنها منجر به نشستن یک لایه پودری روی قطعه می شود و غوطه ور کردن بیش از 10 دقیقه به افزایش ضخامت روکش نمی انجامد . بنابراین این روش باید به عنوان یک تنظیم کننده دیده شود که پس از تعیین تقریبی ضخامت مورد نیاز به توجه به فرم دهی مورد نظر انجام شود .

در فرم دهی سرد فلزات ، بهترین نحوه تعیین ضخامت رو کش های فسفات ، از طریق g/m2است . این مقادیر از طرق مختلف حل کردن و کاهش وزن اندازه گیری می شوند ( قسمت 7 . 1را ببینید ) . تعیین ضخامت روکش ها به  در سردکاری توصیه نمی شود ، چرا کهاندازه گیری ضخامت توسط وسایل مغناطیسی با توجه به تنوع زیاد ترکیب و ساختار روکش ها می تواند منجر به داده های غیرقابل اطمینان شود . 

در فرایندهای سردکاری ، لایه های روی فسفات ، در مقابل روکش های آهنی یا منگنزی ، بهترین رفتار موضعیرا از خود نشان می دهند که به این دلیل است که روی فسفات با هر شتابدهنده ای عمل می کند . با این حال استفاده از منگنز فسفات ، در مواقعی که فشارهای بسیار بالا مورد استفاده است ، می تواند سودمند باشد . وضعیت دیگری که در آن روی فسفات نامناسب تر از روکش های فسفات آهن/اکسید آهن است ، زمانی است که در مرحله آخر نیاز به سطحی بدون هیچ ماده باقی مانده داریم . سیستم های روی فسفات همراه با شتابدهنده نیترات تمایل به مصرف فزاینده Fe(II) حمام دارد . در نتیجه ، روکش های تولید شده از این طریق ، همراه با با روی فسفات مقادیری آهن نیز دارند . در مواردی که چنین روکش هایی تحت شرایط سخت قرار می گیرند ، مثل اکستروإن های متوالی ، فسفات آهن موجود در روکش اثرات زیان آور خواهد داشت .

با استفاده از چرب کننده های واکنش ، می توان در یک فرایند تک مرحله ای ، روکش های فسفات را روی چرب کننده که از قبل در محل وجود دارد ، تولید کرد ( قسمت 4 . 3 . 3 را ببینید ) . در فرایندهای فسفات دار کردن مطلوب ، که چرب کننده ها در یک مرحله جداگانه استفاده می شوند ، فرایند به صورت 3 یا 4 مرحله انجام می گردد . با این حال ، در کاربردهای بسیار پیچیده باید متذکر شد که سیستم تک مرحله ای فسفات + چرب کننده به خوبی فرایندهای چند مرحله ای قدیمی عمل نمی کنند . با این وجود روش تک مرحله ای ، به استثنای سادگی اش ، فواید دیگری نیز دارد . این فواید شامل محافظت بهبود یافته در برابر زنگ در حین نگه داری و سطح براق فلز همراه با کاهش زبری سطح می شود . در نتیجه این ایده در صنایع آبکاری لوله ها ، سیم ها و دیگر قطعات کشش عمیق فولاد محبوبیت پیدا کرده است .

با توجه به ماهیت دقیق فرایند فرم دهی فلزاتروکش های فسفات یک یا چند ویژگی مطلوب ارائه می کنند:

1)      افزایش درجه فرم دهی ممکن در یک مرحله

2)      افزایش درجه فرم دهی کلی ممکن

3)      کاهش تعداد فرایند های میانی پخت

4)      افزایش ماکسیمم سرعت فرم دهی

5)      بهبود کیفیت سطح قطعه فرم داده شده ، کاهش ضرب خوردگی و خراش ، همراه با روکش فسفات باقی مانده که ایجاد مقداری محافظت در مقابل فرسایش می کند.

6)      کاهش فرسایش و تحلیل ابزار های فرم دهی که منجر به افزایش بهره وری می گردد.

5 . 1 . 5 . 4 اثر فسفات دار کردن بر قطعه فرم داده شده

علاوه بر نقش فسفاته کردن در حین فرایند فرم دهی ، باید اثر آن روی قطعه تکمیل شده را نیز در نظر گرفت . تا اینجا دیدیم که کاهش قابل توجهی در ضرب خوردگیو خراش سطوح ، قطعه ای با کیفیت سطح بهبود یافته تحویل می دهد . اندازه گیری زبری سطح فلز نشان می دهد که با استفاده از فسفاته کردن مقادیر زبری بهبود می یابند . در نتیجه ، مقادیر بهبود یافته زبری سطح ( Rt) در کشش سرد تولید لوله های فولادی با اندازه دقیق نیز یافت شده اند و نتایج مشابهی در کشش میله های فولادی نیز به دست آمده است . 102 در کشش لوله های دقیق برای سیلندرهای هیدرولیک ، معمولا زبری سطح کمتر از 5Rtنیاز است . این مقادیر معمولا با استفاده از روی فسفات با وزن 5 g/m2و ، حتی بهتر ، با اضافه کردن لایه های اکسید آهن/فسفات آهن با وزن حداکثر 2 g/m2، به دست می آیند . برای به دست آوردن مقادیر بسیار کم زبری ، در حدود کمتر از 2Rt، ممکن است لازم باشد از چرب کننده های واکنش مولکولی سنگین به جای ترکیبی از روکش فسفات و چرب کننده های امولسیونی استفاده شود . از این طریق مقادیر بالاتر اصطکاک دیده می شوند که سطوحی با کم ترین مقادیر زبری تولید می کنند .

کاهش اصطکاک از طریق سطوح فسفاته شده همچنین باعث کاهش سخت شده قطعه در حین فرم دهی می شود . در این حالت حرکات درونی جرم داخلی فلز وابسته به لایه های سطح کاهش یافته و منجر به مقادیر کم تر سختی میکرو و ماکرو می شود . در نتیجه ، برای مثال ، قدرت کششی پایین تر و مقادیر بالاتری از افزایش طول در کشش لوله های فولادی فسفاته شده به دست می آیند ( شکل 90 ) . 

6 . 1 . 5 . 4 مراقبت های بعد از سردکاری

پس از سردکاری ، سطح فلز همراه با یک روکش فشرده شده از فسفات و چرب کننده بیرون می آید . این حالت باعث وجود درجه ای از محافظت در برابر خوردگی در زمان نگه داری در انبار و حمل و نقل برای قطعه می گردد . در بعضی موارد ، این محافظت باید از طریق روغن های محافظ خوردگی افزایش یابد . در تعدادی از موارد ، لایه باقی مانده برای بعضی فرایندهای بعدی قابل استفاده است . این حالت برای مواردی چون تولید لوله از طریق کشش یا ساخت سیلندر که در آن ها لغزندگی بهتر مطلوب است ، صادق است .

 

ترجمه توسط واحد تحقیق توسعه شرکت جلاپردازان پرشیا    65733152

مرجع : technical-application-of-phosphating

 

بیشتر بدانیم

1.کشش سیم

2.کشش لوله

3.قالب عمیق

4.باز کشش 

مانده تا آبکاریران 1402

نمایشگاه صنعت آبکاری 1402

مانده تا روز آبکار 10 مهر ماه

روز آبکار 10 مهر ماه 148 Days
jala-logo4.png
شرکت جلاپردازان پرشیا
تولیدکننده محصولات و تجهیزات آبکاری
خدمات آبکاری، پوشش دهی و مشاوره
تهران - شهرک صنعتی باباسلمان
02165734701 - 02165734702
ایمیل: service@jalapardazan.com

جستجو