شنبه تا پنجشنبه : 17 - 8
تهران - شهرک صنعتی باباسلمان
شهریار، شهرک صنعتی باباسلمان، خیابان صنعت

محلول های آبکاری

  • English بررسی محلولهای آبکاری از طریق هول سل

    the investigation of electroplating

    and related solutions with the aid of

    THE HULL CELL

    This edited English translation © Robert Draper Ltd 1966

    All rights reserved. This book, or parts thereof, may not be reproduced in any form without the previous written permission of the publishers

    Printed in Great Britain

    by Clare o' Molesey Ltd, Molesey, Surrey

    PUBLISHER'S NOTE

    I N R E c EN T years the Hull cell has come to be recognised as a most important tool in the control testing of electroplating and related solutions. The apparatus required is simple and inexpensive, the test takes only a few minutes to perform and does not require a particularly skilled operator. Yet with its aid much can be learnt about the composition and characteristics of a plating solution ; a chromium plating bath, for example, can be controlled and maintained by using only a hydrometer and a Hull cell. The hydrometer checks on the chromic acid while the Hull cell determines the catalyst ratio and impurity level. The Hull cell thus provides an extremely valuable plating control test.

    What it does require however is skilled interpretation of the test panels obtained, comparisons being made with panels plated in solutions of known composition and purity and under known conditions. In the course of time most users of the Hull cell will accumulate a "considerable amount of comparative data. For the newcomer however the problem is how to establish the large number of necessary standards of comparison for which ideally one should take each plating solution in use and investigate the effects of altering each and every parameter-major and minor constituents, impurities and operating conditions-in small steps both singly and in combination.

    This is where this book is of value because the Authors have themselves carried out these investigations and produced many hundreds of test panels from which nearly 200 have been selected and are reproduced in these pages for use by the operator in the interpretation of his own test results. Detailed written information on the Hull cell behaviour of plating solutions in various conditions of balance and under various plating conditions is also included together with notes on the use of the Hull cell for investigating covering power, current and metal distribution, metal surface condition, anodic processes including electropolishing and the suitability of tank linings.

    This book was first published in Germany by the Eugen G. Leutze Verlag, Saulgau/Wiirtt., in 1956 and a second edition was published in 1965. The English translation was made by members of the staff of Electroplating and Metal Finishing who also edited the manuscript and included much additional information on the design and use of the Hull cell. Chapters 1 and 2 have in fact been completely re-written. We should like to express our thanks to R. 0. Hull & Co. Inc. for their co-operation in providing this additional information together with the whole of Chapter 9, and in particular to Dr. M. M. Beckwith, Vice-President, who also checked through the whole manuscript, for his most helpful comments and suggestions.

    Teddington, June 1966

    PREFACE TO THE FIRST GERMAN EDITION

    . T H E I D E A of this book followed my own endeavours to form a photographic file of Hull cell panels illustrating various phenomena which arise in using the cell. Only during the course of this work did it occur to me that a collection of photographs of this type in book form would be of great help to others who use the Hull cell for testing solutions, and not least to the untrained apprentice. The basic material for this volume was therefore formed by many illustrations which I believe are capable of describing the appearance of Hull cell panels much better than the most comprehensive verbal descriptions. The reader who studies the illustrations and the accompanying text will save himself much effort in his attempts to interpret and evaluate the panels.

    One problem which presented itself in reproducing the appearance of the panels photographically was how to show lustre and brightness. There appeared to be three ways of doing this. I could let the panel reflect a white light source. This showed fully bright surfaces as white and without structure while the less bright and matt surfaces appeared grey due to their lower specular reflectivity. If on the other hand the bright parts of a surface reflected a black colour, they would appear as black and without structural features. In this case again, the matt parts of the surface appeared grey due to the fact that they reflected diffuse light. I found that black gave a better contrast against less black surfaces than white against less white ones. For this reason I decided to use black reflections. This is also justified by the fact that a considerably larger number of areas would appear as light than as dark corresponding to bright and matt areas of surfaces. The third possibility, that of choosing a black-and-white pattern for the reflection source, was eliminated as giving rise to too much distortion and also because the pattern would mask structural features of the panels.

    In order that this book should not be too long, I have restricted it to the most important plating solutions used in practice. My thanks are due to the Eugen G. Leuze Verlag for their careful attention to the compilation of the illustrations.

    Bielefeld, June 1956

    WALTER NOHSE

    PREFACE TO THE SECOND GERMAN EDITION

    S IN c E THE publication of this book in 1956 the Hull cell has established itself widely both in the laboratory and in the factory. The need for a second edition, which finds its reason in the rapid sales of the original edition, demonstrates that today the Hull cell has become a standard method of control in the electroplating shop.

    July 1962 saw the appearance of the German Standard DIN 50 957 which laid down the principles of the use of the Hull cell for testing electroplating solutions. In the meantime two different cells with capacities of 250 and 1000 ml respectively have come into use ; of these the 250 ml cell is the most frequently employed.

    In describing the Hull cell and its method of operation, I have made good use of the information in DIN 50 957 and where it seemed necessary I have amplified this for the practical plater. The abbreviations for 'porous', ' rough ' and ' no deposit ' have been altered although their visual symbols remain almost unchanged.

    In the second edition, further work has been added which is designed to· show the versatility of the Hull cell. The last two chapters in this edition consist of a chapter written in collaboration with Ing. G. Wagenblast on the investigation of nickel plating salts in the Hull cell and a section contributed by Dr. J. Heyes on the measurement of metal distribution in electroplating solutions.

    My gratitude for support in further experiments and for many helpful suggestions is due to Mr. Richard Hull Jr., Mr. Giinter Wagenblast and Dr. J. Heyes.

    Lippstadt/West.f, Spring 1965

    WALTER NOHSE

    CONTENTS

    PUBLISHER'S NOTE

    PRPREFACE TO THE FIRST GERMAN EDITION

    EFACE TO THE SECOND GERMAN EDITION

    THE HULL CELL

    Why use a Hull cell - Hull cell design - Material of construction - Temperature and agitation - Anode - Cathode - Current supply, control and measurement - Hanging Hull cell - Modified Hull cell

    THE HULL CELL TEST AND Irs INTERPRETATION

    Current distribution on the test panel - Test procedure - Interpretation of the test results

    CHROMIUM PLATING SOLUTIONS Test procedure - Test results

    IMPURITIES IN BRIGHT NICKEL PLATING SOLUTIONS

    Copper contamination - Iron contamination - Effect of hydrogen peroxide - Chromic acid contamination - Zinc contamination - Cadmium contamination - Lead contamination - Other impurities and plating defects

    BRIGHTENERS IN NICKEL PLATING SOLUTIONS

    CADMIUM PLATING SOLUTIONS

    Hull cell operating conditions - Test results - Cadmium and cyanide contents - Brightener concentration - Caustic soda - Solution composition

    ZINC PLATING SOLUTIONS

    Test conditions - Effect of increasing hydroxide content - Effect of increasing cyanide content - Practical implications - Effect of impurities

    COPPER PLATING SOLUTIONS

    BRASS, TIN AND SIL VER PLATING SOLUTIONS (by R. 0. Hull and Company Inc.)

    Brass plating baths - Alkaline tin baths - Cyanide silver baths - Miscellaneous plating baths

    TESTING OF NICKEL SALTS

    (by W. Nohse and G. Wagenblast)

    Nickel chloride - Nickel sulphate - Nickel plating salts - Conclusion

    MET AL AND CURRENT DISTRIBUTION

    Part 1. Use of the Jet test in conjunction with the Hull cell to determine metal distribution

    Part 2. Direct determination of current and metal distribution (by Dr. 'Josef Heyes)

    SOl\1E MISCELLANEOUS APPLICATIONS OF THE HULL CELL 115

    1. Testing the suitability of basis metals - 2. Covering power

    3. Anodic oxidation - 4. Electropolishing - 5. Testing tank linings

    FURTHER NOTES ON THE USE OF THE HULL CELL 120

    TypeS of anode - Incorrect polarity of the experimental apparatus

    INDEX

    CHAPTER 1

    THE HULL CELL

    Why use a Hull cell ?

    A P L A T I N G bath is a solution of a number of chemicals each of which has a certain effect on the properties. of the electrodeposited metal coating. In order, therefore, to obtain electroplated coatings of the desired properties it is necessary to know the composition. of the electrolyte. In as far as this concerns the concentrations of metal and other salts, there are a sufficient number of analytical methods known today which, with the aid of simple techniques, a little experience and care in operation, give results of sufficient

    accuracy.* '> ·

    However, such methods of analysis are sometimes time-consuming, for instance, the determination of catalyst concentration in chromium plating solutions. Moreover they are not generally suited to the control of organic 'addition agents. Although the type of compound employed fol.this purpose is often known from the patent literature, it is rare that the plater knows the exact chemical composition and it is seldom that analytical methods are available to him for determining the concentration in the plating solution. From the practical point of view this is dangerous because a small departure from the optimum concentration of such addition agents will not normally produce any visible change in the electrodeposit produced under the normal

    * ' The Analysis of Electroplating and Related Solutions ' by K. E. Langford, Robert Draper Ltd., Teddington,

    'Schnellanalysenmethoden fiir galvanische Bader' by R. Weiner and C. Schiele, Eugen G. Leuze Verlag, Germany.

    THE HULL CELL

    plating conditions and it is impossible for the plater to obtain advance warning in this way of a dangerous deterioration in the solution. Fortunately however changes are more easily. visible in deposits produced under other conditions of electrodeposition and the Hull cell is a very suitable tool for such plating tests.

    It was first described by R. 0. Hull in a paper entitled ' Current density characteristics, their determination and application ' (Proc. Amer. Electroplaters' Soc., 1939, 27, 52 - 60) and its application in the electroplating industry has been well summarised by Armet* in the following words. " The Hull cell may be employed usefully for the control of most types of plating solutions. One of its great advantages is the fact that it is possible for the skilled worker to assess the deposit characteristics at varying current densities all on one test panel. It is furthermore possible to carry out tests at various temperatures and current densities, and so to get a good idea of the bath characteristics and of the changes due to the variables introduced.

    " The following effects may be investigated using the Hull cell.

    1. Variation in main solution constituents and addition agents.

    2. Operational variations such as temperature and current density.

    3. Effect of organic and/or metallic contamination of the solution.

    4. Investigations of tank linings, i.e. rubber and plastics, which might be suspect. Hull cell panels may be conveniently stored in the desiccator, or in plastic envelopes as permanent records of solution characteristics.

    " It is possible with regular Hull cell tests to anticipate plating solution faults well in advance of their becoming a production danger. This is because of the fact that it is possible to see results at current densities both higher and lower than those obtained in production working, and it is normally in these areas that troubles first manifest themselves. Such troubles, though very apparent over a range of laboratory plating tests, quickly extend to the production plating if not rectified.

    " It is a fairly well established fact that all plating baths, even of the same solution, are individual and distinct from each other. When complex impurities accumulate, it is often very difficult to control such solutions as chromium plating solutions, by chemical analysis alone, and in cases such as this the Hull cell proves invaluable.

    " In cases where chemical analysis points to the need for large additions to be made to a solution, the Hull cell test can be used to check whether it is safe tomake such additions in one go without upsetting the bath equilibrium. The Hull cell test can demonstrate the presence of plating solution impurities in quantities so small as to be difficult to detect chemically but which can

    * R. C. Armet. 'Electroplating Laboratory Manual ', Robt. Draper Ltd., Teddington

    H U L L C E L L -D E S I G N

    nevertheless cause production difficulties. A very good example of this is the detection of chlorides in chromium plating solutions, which will cause a deterioration in covering power."

    However, while chemical analysis yields quantitative results, a Hull cell test only presents the investigator with a picture, and in order to interpret the picture, standards are required for comparison. Such standard pictures have not, to the Author's knowledge, been published before and it is the aim of this book to present illustrations demonstrating the effects on the Hull cell deposit of changes in the main constituents of the more important electroplating solutions and thereby to save the reader the task of carrying out his own experiments.

    Hull cell design

    The Hull cell is a miniature plating vat having a particular trapezoidal plan (see Fig. 1 et seq). The shape and dimensions are most important as

    Fig. 1. Commercial (British) Hull. cell apparatus showing the cell, water bath and current control panel. [Courtesy M. L. Alkan Ltd.

    THE HULL CELL

    Fig. 2. 267 ml Hull cell. The 250 ml and 320 ml cells differ only in the depth of solution employed.

    Fig. 3. 534 ml Hull cell recantmended [or extended testing because of the relatively smaller change in bath composition and temperature during a series of tests.

    Fig. 4. 1000 111/ Hull cell.

    HULL CELL DESIGN

    will be seen below. It is manufactured in various sizes, 250, 267, 320, 534 and 1000 ml, mainly for operating convenience. The intending user would buy either the cell itself and make his own arrangements for current supply, etc., or a complete test apparatus with current supply, control panel and water bath (or immersion heater) as shown in Fig. 1.

    The original cell upon which Dr. Hull's calculations were made was the 1000 ml cell but while it proved quite successful in practice, it was felt. that a smaller capacity cell might prove more convenient to use. So the 267 ml cell was developed, this capacity being chosen to assist in the rapid calculation of required· additions to the plating bath since 2·0 g of any addition per 267 ml are equivalent to 1 ·0 oz per U.S. gallon. For the same reason the 320 ml cell was developed for use in Britain (2·0 g of additive per 320 ml are equivalent to lO oz per Imperial gallon) while the 250 ml cell is popular on the Continent of Europe.

    However, these small Hull cells have been criticised for being too small in that solution composition and temperature can change rapidly in spite of precautions and the designers now recommend the 534 ml cell which is not only double the volume. but also of a different shape, allowing alternative test procedures. The increased volume allows more tests to be conducted before the condition of the solution changes sufficiently to nullify · the results. Generally, on a bright nickel plating bath, the maximum number of tests recommended (without any correction of the solution for pH) in the 267 ml cell is three and in the 534 cell five. Temperature control is also better. Frequently, tests are run for 5 min at 25 to 30°C with cathode currents of 1 to 3 amps and in practice the temperature of the 534 ml bath does not appreciably increase under these conditions. Also if the anode for the system being tested has a relatively low polarizing current density, then the 534 is preferable because two or three anodes can be used with a single cathode thus bringing the anode current density below the limiting value. The 534 Hull cell uses the same size panel and the same current density scale as the 267.

    People who use the 1000 ml cell generally do SO· because they prefer the even smaller temperature rise which results from the passage of a given amount of current. Also, a larger cathode is employed on which it is easier to detect minute effects occurring in the test bath. This larger panel is also used in the Hanging Hull Cell to which reference will be made later.

    In the Hull cell the cathode is fixed at an angle to the anode and, in most models, both anode and cathode occupy the full cross section of the cell. The shape and actual dimension of the cell are most important in determining the cell current distribution ; the cathode angle of inclination was arrived at only after careful thought and research and, if this is changed, current distribution will no longer remain independent of the nature of the electrolyte.

    THE HULL CELL

    Cathode

    267 ml Solution Level

    Fig. S. 267 ml capacity Hull cell. All measurements given are internal and in inches. The 250 ml and 320 ml cells have the same plan measurements but the solution level is lowered and raised respectively to yield the appropriate capacity.

    Fig. 6. 534 ml Hull cell. All measurements given are internal and in inches.

    CONSTRUCTION

    ANODE

    Fig. 7. Dimensions of the 1000 ml Hull cell.

    The various cells, their dimensions and test lay-outs are shown in the illustrations. The 250, 267 and 320 ml cells are identical except in regard to the depth of electrolyte employed and, of course, to the relation between the applied cell current and the scales or printed curves relating distance to primary current, density (see Chapter 2).

    Hull cells are manufactured under one or more of the following U.S.

    Patents: 2,149,344 ; 2,760,928 ; 2,801,963 ; 3,121,053.

    Material of construction

    The cell must be manufactured from a non-conducting material which is also completely inert to the electrolyte being tested. As the Hull cell is. frequently used to test for impurities in solution, this latter requirement is most important. Perspex is the most usual material of construction and is suitable for all plating solutions other than chromium. Its transparency is an advantage in that one can see better what is happening to the cathode during the test and also that one can see the back of the cathode, which is close to the cell wall. Polythene is also used and PVC and PVC-lined steel are sometimes encountered. A new development by the R. 0. Hull & Co. Inc. is a moulded polypropylene cell for chromium plating solutions which is preferable to the porcelain enamelled iron cell previously recommended.

    Since stability of size and shape are important even when hot solutions are being tested, the plastic material must be carefully joined with adhesive or by welding. ·One piece moulded plastic cells are best.

    THE HULL CELL

    Fig. 8. 2SO ml Hull cell of German manuiacture with electrically heated water bath.

    Fig. 9. 534 ml American Hull cell fitted with quartz immersion heater and thermostatic control.

    USE

    Temperature and agitation

    For temperature control .either a water bath (see Fig. 8) or thermostatically controlled quartz immersion .heaters (see Fig. 9) can be employed.

    The R. 0. Hull Co. also make a variable speed reciprocating agitator to closely simulate cathode rod agitation (Fig. 10).

    Anode

    As can be seen from the illustrations, the anode, which is 2! in X 2i in, is fitted closely to the cell wall. Normally it is flat and occupies the full cross section of the cell. Where the solution being tested is likely to give rise to high anode polarization, the anode will need to be constructed from gauze or from corrugated material to give an increased superficial area (see Fig. 11 ; see also Figs. 198 - 200). Its thickness must not exceed 0·2 in and its height should be such as to leave sufficient area over the solution level to take the electrical connections. The choice of anode material depends on the solution under test ; anodes are in fact made of brass, cadmium, copper, lead, nickel, tin and zinc and, for precious metal plating, in stainless steel, platinum and silver.

    Fig. 10. Hull cell agitator to simulate cathode rod agitation in the Hull cell.

    THE HULL CELL

    Fig. 11. Flat and corrugated Hull cell anodes complete with lead wire.

    The same anode should be used for all experiments on a given solution in order to eliminate the possible effect of differences in the anode material. It has become common practice (in Germany) to surround the anode with filter paper, and if this is done at all it should be done for the entire series of experiments. However, it is generally preferable not to use filter paper but to clean and activate the anode in a suitable stripping solution for the metal.

    When testing an electrolyte for the conditions of solution of the anode, the latter replaces the cathode panel in the cell. If a quantitative evaluation is required, the anode panel must be made to the full size of the standard cathode for the particular cell in use.

    Cathode

    The condition of the plating solution is judged from the appearance of the cathode after the test. Accordingly, the cathode material and its surface condition should ideally be the same as that of the work which is plated in practice. Generally however polished brass or steel is quite suitable, particularly if the brightness of the deposit is the only point of interest.*

    It is well known that the surface composition and condition of the basis metal can have a most considerable effect on the plating obtained. It is important therefore that these factors be standardised. The R. 0. Hull Co. supply standard cathodes in zinc plated semi-bright steel (No. 3 finish) which is ideal for cadmium and zinc or in highly polished brass, protected by peel-off

    ELECTRODES

    Fig. 12. Cathodes for the Hull cell.

    lacquer, which is suitable for testing bright brass, bright copper and bright nickel. The zinc coating is put on at the mill to prevent rusting of the panels before use and it is removed by dipping in 50% (vol) hydrochloric acid followed by rinsing, wiping of the panel with a clean cloth or wet paper towel and final rinsing just before use. In the case of polished brass panels, the protective plastic coating is first removed by grasping the corner edge with a knife or fingernail, then soaking the panel for approximately 20 seconds in a hot non-tarnishing brass cleaner or rubbing with a cotton wad or sponge soaked in trisodium phosphate or alkali cleaner, followed by rinsing in cold running water. When cleaning test panels, care must be taken to handle the panels by the edges only so as to prevent finger print smudges. If necessary, rubber gloves may be worn. ·

    It is inadvisable to use a cathode more than once since stripping will in all probability materially alter the surface characteristics of the test piece.

    Brass test panels are usually polished on the front surface only but in some circumstances it may be necessary to polish the back as well, as for example

    * R. 0. Hull & Co. Inc. are not in entire agreement with this and always prefer to carry out a test on a substrate, be it basis metal or electrodeposit, as close as possible

    to that used in practice. Steel is recommended for testing cadmium and zinc. For nickel either a steel panel or a bright polished brass panel is used. When testing chromium solutions the panel is first plated with bright nickel and then rinsed and used in the Hull cell test. If it is a question whether the chromium or the bright " nickel is the source of the problem, the panel is first nickel plated in the Hull cell using the bright nickel plating solution in question, and then tested in the chromium plating solution in another Hull cell.

    THE HULL CELL

    when it is required to observe the tendency to etching on very low current density areas.

    Hull cell test panels are' made in two sizes, one to fit the 250, 267, 320 and 534 cells and the other for the 1000 ml cell and the Hanging Hull cell. It fits closely to the cell wall and its height should be such as to stand out of the solution sufficiently to make the electrical connections. Its thickness should preferably be 0·5 ± O·l mm but it can be up to 1 mm.

    Current supply, control and measurement

    For operation of the Hull cell a source of direct current is required capable of supplying 3 amps (or 5 amps in the case of 1000 ml cell) ; the maximum voltage ever likely to be required is 18 volts though normally it will be very much less than this.

    To supply this direct current use can be made of either car batteries or small transformer/rectifier units. Since current ripple can affect the structure of an electrodeposit, it is important if a rectifier is used that the amount of ripple does not exceed 15% ; an ordinary battery charger is therefore unsuitable. Three-phase rectifier units incorporating valve smoothing circuits have been widely employed in the past. However, even these are affected by mains voltage fluctuations such as may occur in any works laboratory and the modern tendency therefore is to use transistorised mains units which supply a constant voltage direct current, independent of either loading or mains voltage and which is practically free from ripple. An arrangement for constant voltage or constant current density control is sometimes used as an additional refinement.

    When a lead accumulator is used to supply the power for the Hull cell it is recommended to arrange two 6 volt car batteries as shown in Fig. 13. This arrangement will usually provide sufficient current for the 250, 267 or 320 ml Hull cell but is less convenient than a transformer/rectifier unit.

    Whichever method is employed means must be provided for controlling and measuring the current passed by the cell. The regulator should operate over 100% of the range and be stepless. Variable resistances can be used though in the case of a rectifier unit 100% stepless control through an autotransformer is to be preferred.

    Resistances should be selected in such a way that

    R = t.V ~ (U)

    lmin

    CURRENT SUPPLY

    Fig. 13. Example of a circuit for Hull cell current supply using lead accumulators.

    R1 Variable rheostat with 'off' position, 6 ohms, 6 amperes R;i Variable rheostat with 'off' position, 30 ohms, 5 amperes A1 Ammeter, 10 amps, divided into 0·2 amp units

    ~ Ammeter, 6 amps, divided into 0·2 amp units

    V1 Voltmeter, 15 volts, divided into 0·2 volt units

    V2 Voltmeter, 6 volts divided into 0·2 volt units.

    where

    !J.. V = the largest required voltage drop in volts and Imin =the lowest required current in amperes.

    The maximum current which can pass is taken as the loading.

    THE HULL CELL

    To O.C. Source

    Fig. 14. Circuit diagram of resistance comm! in the Hull cell apparatus shown in Fig. 1.

    All the experiments described up to p. 90 were carried out using car batteries connected as shown in Fig. 13. The experiments on quality testing of nickel salts were conducted with the aid of a mains unit while Dr. Heyes (see p. 109) conducted his investigations with an electroplating rectifier with a ripple smoothing arrangement.

    Hanging Hull cell

    A newer development, currently not available outside the United States, is the Hanging Hull cell (Fig. 15).

    As its name suggests, this is a version of the Hull cell designed to be hung directly on the carrier bar or cathode rod of the plating tank and which will produce on the test panel a deposit showing the characteristics of the plating bath over the entire operating current density range, thus combining most of the features of the standard Hull cell with the advantage of testing under production conditions. It consists of a 0 to 50 amp Perspex-encased ammeter hermetically sealed to a Perspex-encased 24 in or 32 in copper stem which, at the top, forms the cathode bar hook and at the bottom holds a Perspex Hull cell which in this case comprises a V-shaped box holding the larger size cathode as used in the 1000 ml Hull cell.

    It is operated in much the same way as the standard Hull cell and the results are comparable for comparable current densities. It should however be remembered that the Hanging Hull cell panel may be plated at considerably higher currents than the standard Hull cell panel, thereby widening the current density range on the panel. For testing barrel solutions, the empty stationary barrel is submerged, the loading panel removed, and the Hanging Hull cell

    HANGING HULL CELL

    held in the barrel, electrical contact being made with a flexible lead to the cathode rod.

    Since the Hanging Hull cell operates directly in the plating solution, a much closer picture of the actual plating range present in the bath is obtained on the test panels than in the laboratory Hull cells. This is especially true in chromium 'plating solutions where the current densities found in production may not be duplicated in the 267 and 1000 ml Hull cells.

    Among the most important uses of the Hanging Hull cell is the determination of the source of trouble in a sequence of plating operations. By comparing the panels obtained by cleaning and pickling the test panels in the plating set-up with those obtained using freshly stripped steel or freshly cleaned brass panels, any difficulty due to poor cleaning or pickling can be detected and traced directly to its source.

    Fig. 15. The Ha11gi11g Hull cell.

    THE HULL CELL

    By a similar set-up, the Hanging Hull .cell may be used to test the effectiveness of post-plate bright or proprietary dips by comparing the panels obtained with those made in fresh· dip solutions in a small container.

    Another important use of the Hanging Hull cell is to make a current survey of a plating tank. A stripped panel is inserted into the cell head and the unit hung on various positions of the cathode rod. With the total voltage at a fixed value, the meter readings on the cell should be the same throughout the length of the cathode bar. If any variations in current reading are noticed, the cause may be poor anode contact or improper bussing of the cathode rod.

    Modified Hull cell

    The Modified Hull cell was developed for particular application to high current density solutions such as chromium plating solutions.* It consists of the standard (250, 267 or 320 ml) Hull cell in which t in diameter holes have been introduced into the two parallel sides as shown in Fig. 16. On the long side of the cell the holes are kept towards the anode end, thus retaining the restrictive effect of the low current density areas. Exact spacing and size of the holes do not seem to be at all critical.

    %"Dia Holes

    Fig. 16. Modified Hull cell.

    The Modified cell is used inside another vessel, such as a 7 in diameter crystallising dish filled to the cell solution mark with the solution under test or it can be placed directly in the plating tank. Operation of the cell at currents of 10 to 15 amps and temperatures of 115°F are possible with little temperature fluctuation as natural solution movement by convection currents produces a constant interchange of. solution through the holes. Slow stirring helps and, unless of a very violent nature, does not appear to have any effect on the deposit.

    * J. Branciaroli, Plating, 1959, 46, No. 3, 253 - 60.

    CHAPTER 2

    THE HULL CELL TEST

    AND ITS INTERPRETATION

    Current distribution on the test panel

    To BE effective the current distribution on the test panel should cover a wider range of current density than that which is encountered in practice with the solution under test.

    The primary current distribution on the Hull cell cathode follows a logarithmic curve and can be represented as

    C.D. at any point = I (C1 - C2 log L)

    where L = distance along the cathode, I = total cell current and C1 and CJ represent . constants which depend on the nature of the electrolyte. Hull determined these constants for a number of electrolytes, finding in general that they altered little from one electrolyte to another. In consequence, the values were averaged and general purpose formulae applicable to all electrolytes have been arrived at as follows :

    for the 1000 ml cell

    C.D. at any point = I (18·8 - 28·3 log L) for the 267 ml (and 534 ml) cell

    C.D. at any point = I (27·7 - 48·7 log L)

    (between the limits L = 0·25 and L =·3·25 in) where the current density is in amp/sq ft, I is in amperes and L is in inches.

    HULL CELL TEST

    Fig. 17. Plating range of 267 ml Hull cell.

    [H. ']. Sedusky and ']. B. Mohler

    CURRENT DISTRIBUTION ON PANEL

    Since the 250 and 320 ml Hull cells differ from the 267 only in the depth of the solution employed, the formulae for these cells become :

    for the 250 ml cell

    C.D. at any point and for the 320 ml cell 267 I (z7.7 _ 48·7 log L) 250

    C.D. at any point = ~~~ I (27·7 - 48·7 log L)

    Deviations from these are to be expected, particularly for cyanide electrolytes. If for instance the above equations lead one to expect a current density of say 30 amp/sq ft, this current density will generally not apply over the whole period of the test. When the current is first turned on the current density at this point will be 30 amp/sq ft but later cathode polarization wil! cause a change in the current density, or alternatively it may cause periodic current fluctuations. However, it has been shown in practice that these equations do give sufficiently close approximations of the local current density for most purposes.

    In any case it must be remembered that for nearly all purposes the Hull cell test is a qualitative one and the specification of current density is usually quite unnecessary except by such general terms as low, medium or high.

    When it is desired to refer to the actual current densities, graphs such as that shown in Fig. 17 may be constructed to avoid the often lengthy calculations involved in applying the above equations. If for instance one is using a 3 amp cell current in a 267 ml Hull cell, the current density at a point on the test panel 1 inch from the high current density end can be read off as 85 amp/sq ft, and at 2 inches from the high current density end, it is approximately 39 amp/sq ft and so on. These values can in turn be plotted on scales such as that shown in Fig. 19, which are even more convenient to use.

    Hull cells can be left or right handed so that the high current density area can be at either end of the test panel. Generally, however, the cells are as shown in Figs. 2 - 4, p. 4 and the high current density area is on the left of the panel.

    Metal distribution is again different from the current distribution since it also depends on the throwing power of the solution. The one exception is the acid copper plating bath in which the metal distribution and primary current distribution are always closely similar and secondary polarization effects are very small.

    Fig. 19. Current density scales [or the 267 ml, 534 ml and 1000 ml Hull cells (actual size). C11rrc11t density in amp/sq ft. (R. 0. Hull & Co. Jue.)

    Test procedure

    The first essential in making a Hull cell test on a plating solution is to obtain a truly representative sample. The best way of doing this is to use a sampling tube which is simply a Perspex, polythene or PVC tube i in inside diameter and perhaps 4 ft long brought to a coarse jet at the lower end. Still solutions must be mixed with a plunger to avoid layering. It is important to measure the solution depth at the time of sampling in order that the volume in the vat can be estimated accurately before calculating the amounts of any additions that have to be made.

    If chemical analysis is to be carried out (and Hull cell plating tests are not to be regarded as eliminating the necessity for occasional chemical analysis)

    TEST PROCEDURE

    such analysis should be made at this stage and the composition of the bath corrected accordingly before commencing the Hull cell test.

    Different operators prefer slightly different ways of making a Hull cell test (the method given here differs slightly from that described in DI.N 50 957). First the cell is cleaned ; if more than one kind of plating bath is tested regularly, one cell should be used exclusively for each type of bath to avoid contamination of one bath sample by another. Next the temperature of the cell, and that of the water jacket if used, is adjusted to the test temperature. At the same time the electrolyte is warmed in a beaker to the same temperature and transferred to the cell to reach just below the solution level mark.

    The anode should now be cleaned and the cathode prepared as already described. Both electrodes are then placed in position in the cell, connected electrically and a small current applied immediately ; in some cases it will be better to connect and switch on the current before placing the cathode in the electrolyte. The arrangement of electrodes in the various Hull cells is shown in Fig. 20.

    ~ anode

    250,267and 320ml Hull cell

    534 ml Hull cell

    lOOOml Hull cell

  • آزمون کنترل شیمیایی محلول های آبکاری English

    troubleshooting, testing, & analysis

    CONTROLCHEMICAL ANALYSIS OF

    PLATING SOLUTIONS*

    BY CHARLES ROSENSTEIN

    TESSERA-ISRAEL, LTD., JERUSALEM, ISRAEL

    AND STANLEY HIRSCH

    LEEAM CONSULTANTS LTD., NEW ROCHELLE, N.Y.

    Plating solutions must be routinely analyzed in order to maintain the recommendedbath formulation and to preempt the occurrence of problems related toimproper levels of bath constituents. Contaminant levels in the solutions mustalso be monitored. Manufacturers of plating systems establish optimum specificationsto ensure maximum solution efficiency and uniformity of deposits.The various factors that cause the concentrations of bath constituents to deviatefrom their optimum values are as follows:

    1. drag-out;

    2. solution evaporation;

    3. chemical decomposition; and

    4. unequal anode and cathode efficiencies.

    A current efficiency problem is recognized by gradual but continuous changesin pH, metal content, or cyanide content (see Table I).The techniques employed for the quantitative analysis of plating solutions areclassified as volumetric (titrimetric), gravimetric, and instrumental. Volumetricand gravimetric methods are also known as “wet” methods. The analyst mustselect the method that is best suited and most cost effective for a particularapplication.The wet methods outlined here are simple, accurate, and rapid enough forpractically all plating process control. They require only the common analyticalequipment found in the laboratory, and the instructions are sufficiently detailedfor an average technician to follow without any difficulty. The determinationof small amounts of impurities and uncommon metals should be referred toa competent laboratory, as a high degree of skill and chemical knowledge arerequired for the determination of these constituents.Hull cell testing (see the section on plating cells elsewhere in thisGuidebook)enables the operator to observe the quality of a deposit over a wide currentdensity range.

    VOLUMETRIC METHODS

    When titrants composed of standard solutions are added to a sample that containsa component whose concentration is to be quantitatively determined, themethod is referred to as a volumetric method. The component to be determinedmust react completely with the titrant in stoichiometric proportions. From thevolume of titrant required, the component’s concentration is calculated. Thesimplicity, quickness, and relatively low cost of volumetric methods make themthe most widely used for the analysis of plating and related solutions.Volumetric methods involve reactions of several types: oxidation-reduction,acid-base, complexation, and precipitation. Indicators are auxiliary reagents,which usually signify the endpoint of the analysis. The endpoint can be indicatedby a color change, formation of a turbid solution, or the solubilization ofa turbid solution.Some volumetric methods require little sample preparation, whereas othersmay require extensive preparation. Accuracy decreases for volumetric analyses ofcomponents found in low concentrations, as endpoints are not as easily observedas with the components found in high concentrations.Volumetric methods are limited in that several conditions must be satisfied.Indicators should be available to signal the endpoint of the titration. The component-titrant reaction should not be affected by interferences from other substancesfound in the solution.

    GRAVIMETRIC METHODS

    In gravimetric methods, the component being determined is separated from othercomponents of the sample by precipitation, volatilization, or electroanalyticalmeans. Precipitation methods are the most important gravimetric methods. Theprecipitate is usually a very slightly soluble compound of high purity that containsthe component. The weight of the precipitate is determined after it is filtered fromsolution, washed, and dried. Gravimetric methods are used to supplement theavailable volumetric methods.Limitations of gravimetric methods include the requirement that the precipitatedcomponent has an extremely low solubility. The precipitate must also be ofhigh purity and be easily filterable.Species that are analyzed gravimetrically include chloride, sulfate, carbonate,phosphate, gold, and silver.

    INSTRUMENTAL METHODS

    Instrumental methods differ from wet methods in that they measure a physicalproperty related to the composition of a substance, whereas wet methods relyon chemical reactions. The selection of an instrument for the analysis of platingsolutions is a difficult task. Analysts must decide if the cost is justified and if theanalytical instrument is capable of analyzing for the required substances with ahigh degree of accuracy and precision. Instruments coupled to computers canautomatically sample, analyze, and record results. Mathematical errors are minimizedand sample measurements are more reproducible than with wet methods.Instrumental methods are also extremely rapid when compared with wet methods.Unlike humans, instruments cannot judge. They cannot recognize impropersample preparation or interfering substances. Erroneous results are sometimesproduced by electronic and mechanical malfunctions.Analytical instruments frequently used in the analysis of plating solutions canbe categorized as spectroscopic, photometric, chromatographic, and electroanalytical.Spectroscopic methods (flame photometry, emission spectrometry, X-rayfluorescence, mass spectrometry, and inductively coupled plasma) are based onthe emission of light. Photometric methods (spectrophotometry, colorimetry,and atomic absorption) are based on the absorption of light. Chromatographicmethods (ion chromatography) involve the separation of substances for subsequentidentification. Electroanalytical methods (potentiometry, conductometry,polarography, amperometry, and electrogravimetry) involve an electric current inthe course of the analysis.The instrumental methods, comprehensively reviewed below, are most applicableto plating environments.

    SPECTROSCOPIC METHODS

    Spectroscopy is the analysis of a substance by the measurement of emitted light.When heat, electrical energy, or radiant energy is added to an atom, the atombecomes excited and emits light. Excitation can be caused by a flame, spark, X-rays,or an AC or DC arc. The electrons in the atom are activated from their groundstate to unstable energy shells of higher potential energy. Upon returning to theirground state, energy is released in the form of electromagnetic radiation.Because each element contains atoms with different arrangements of outermostelectrons, a distinct set of wavelengths is obtained. These wavelengths, from atomsof several elements, are separated by a monochromator such as a prism or a diffractiongrating. Detection of the wavelengths can be accomplished photographically(spectrograph) or via direct-reading photoelectric detectors (spectrophotometers).The measurement of intensity emitted at a particular wavelength is proportionalto the concentration of the element being analyzed.An advantage of spectroscopy is that the method is specific for the elementbeing analyzed. It permits quantitative analysis of trace elements without anypreliminary treatment and without prior knowledge as to the presence of the element.Most metals and some nonmetals may be analyzed. Spectroscopic analysisis also useful for repetitive analytical work.Disadvantages of spectroscopic analysis include the temperature dependenceof intensity measurements, as intensity is very sensitive to small fluctuationsintemperature. The accuracy and precision of spectrographic methods is not as highas some spectrophotometric methods or wet analyses. Spectrographic methodsare usually limited to maximum element concentrations of 3%. Additionally, sensitivityis much smaller for elements of high energy (e.g., zinc) than for elementsof low energy (e.g., sodium).Applications of spectroscopy include the analysis of major constituents andimpurities in plating solutions, and of alloy deposits for composition.

    Flame Photometry

    In flame photometry (FP), a sample in solution is atomized at constant air pressureand introduced in its entirety into a flame as a fine mist. The temperatureof the flame (1,800-3,100OK) is kept constant. The solvent is evaporated and thesolid is vaporized and then dissociated into ground state atoms. The valenceelectrons of the ground state atoms are excited by the energy of the flame tohigher energy levels and then fall back to the ground state. The intensities of theemitted spectrum lines are determined in the spectrograph or measured directlyby a spectrophotometer.The flame photometer is calibrated with standards of known composition andconcentration. The intensity of a given spectral line of an unknown can then becorrelated with the amount of an element present that emits the specific radiation.Physical interferences may occur from solute or solvent effects on the rate oftransport of the sample into the flame. Spectral interferences are caused by adjacentline emissions when the element being analyzed has nearly the same wavelengthas another element. Monochromators or the selection of other spectral linesminimize this interference. Ionization interferences may occur with the highertemperature flames. By adding a second ionizable element, the interferences dueto the ionization of the element being determined are minimized.An advantage of FP is that the temperature of the flame can be kept morenearly constant than with electric sources. A disadvantage of the method is thatthe sensitivity of the flame source is many times smaller than that of an electricarc or spark.FP is used for the analysis of aluminum, boron, cadmium, calcium, chromium,cobalt, copper, indium, iron, lead, lithium, magnesium, nickel, palladium, platinum,potassium, rhodium, ruthenium, silver, sodium, strontium, tin, and zinc.

    Emission Spectrometry

    In emission spectrometry (ES), a sample composed of a solid, cast metal or solutionis excited by an electric discharge such as an AC arc, a DC arc, or a spark.The sample is usually placed in the cavity of a lower graphite electrode, which ismade positive. The upper counterelectrode is another graphite electrode groundto a point. Graphite is the preferred electrode material because of its ability towithstand the high electric discharge temperatures. It is also a good electricalconductor and does not generate its own spectral lines.The arc is started by touching the two graphite electrodes and then separatingthem. The extremely high temperatures (4,000-6,000OK) produce emitted radiationhigher in energy and in the number of spectral lines than in flame photometry.Characteristic wavelengths from atoms of several elements are separated bya monochromator and are detected by spectrographs or spectrophotometers.Qualitative identification is performed by using available charts and tables toidentify the spectral lines that the emission spectrometer sorts out according totheir wavelength. The elements present in a sample can also be qualitatively determinedby comparing the spectrum of an unknown with that of pure samples ofthe elements. The density of the wavelengths is proportional to the concentrationof the element being determined. Calibrations are done against standard samples.ES is a useful method for the analysis of trace metallic contaminants in platingbaths. The “oxide” method is a common quantitative technique in ES. A sampleof the plating bath is evaporated to dryness and then heated in a muffle furnace.The resultant oxides are mixed with graphite and placed in a graphite electrode.Standards are similarly prepared and a DC arc is used to excite the sample andstandards.

    X-ray Fluorescence

    X-ray fluorescence (XRF) spectroscopy is based on the excitation of samples by anX-ray source of sufficiently high energy, resulting in the emission of fluorescentradiation. The concentration of the element being determined is proportional tothe intensity of its characteristic wavelength. A typical XRF spectrometer consistsof an X-ray source, a detector, and a data analyzer.Advantages of XRF include the nondestructive nature of the X-rays on thesample. XRF is useful in measuring the major constituents of plating baths suchas cadmium, chromium, cobalt, gold, nickel, silver, tin, and zinc. Disadvantagesof XRF include its lack of sensitivity as compared with ES.X-ray spectroscopy is also used to measure the thickness of a plated deposit.The X-ray detector is placed on the wavelength of the element being measured.The surface of the deposit is exposed to an X-ray source and the intensity of theelement wavelength is measured. A calibration curve is constructed for intensityagainst thickness for a particular deposit. Coating compositions can also be determinedby XRF.

    Mass Spectrometry

    In mass spectrometry (MS), gases or vapors derived from liquids or solids arebombarded by a beam of electrons in an ionization chamber, causing ionizationand a rupture of chemical bonds. Charged particles are formed, which may becomposed of elements, molecules, or fragments. Electric and magnetic fields thenseparate the ions according to their mass to charge ratios(m/e). The amount andtype of fragments produced in an ionization chamber, for a particular energy ofthe bombarding beam, are characteristic of the molecule; therefore, every chemicalcompound has a distinct mass spectrum. By establishing a mass spectrum ofseveral pure compounds, an observed pattern allows identification and analysisof complex mixtures.The mass spectrum of a compound contains the masses of the ion fragmentsand the relative abundances of these ions plus the parent ion. Dissociation fragmentswill always occur in the same relative abundance for a particular compound.MS is applicable to all substances that have a sufficiently high vapor pressure.This usually includes substances whose boiling point is below 450OC. MS permitsqualitative and quantitative analysis of liquids, solids, and gases.

    Inductively Coupled Plasma

    Inductively coupled plasma (ICP) involves the aspiration of a sample in a streamof argon gas, and then its ionization by an applied radio frequency field. The fieldis inductively coupled to the ionized gas by a coil surrounding a quartz torch thatsupports and encloses the plasma. The sample aerosol is heated in the plasma, themolecules become almost completely dissociated and then the atoms present inthe sample emit light at their characteristic frequencies. The light passes througha monochromator and onto a detector.The high temperature (7,000OK) of the argon plasma gas produces efficientatomic emission and permits low detection limits for many elements. As withatomic absorption (AA),ICP does not distinguish between oxidation states (e.g.,Cr3+and Cr6+) of the same element—the total element present is determined.Advantages of ICP include complete ionization and no matrix interferences asin AA. ICP allows simultaneous analysis of many elements in a short time. It issensitive to part-per-billion levels.Disadvantages of ICP include its high cost and its intolerance to samples withgreater than 3% dissolved solids. Background corrections usually compensate forinterferences due to background radiation from other elements and the plasmagases. Physical interferences, due to viscosity or surface tension, can cause significanterrors. These errors are reduced by diluting the sample. Although chemicalinterferences are insignificant in the ICP method, they can be greatly minimizedby careful selection of the instrument’s operating conditions, by matrix matching,or by buffering the sample.ICP is applicable to the analysis of major components and trace contaminantsin plating solutions. It is also useful for waste-treatment analysis.

    PHOTOMETRIC METHODS

    Photometric methods are based on the absorption of ultraviolet (200-400 nm)or visible (400-1,000 nm) radiant energy by a species in solution. The amount ofenergy absorbed is proportional to the concentration of the absorbing species insolution. Absorption is determined spectrophotometrically or colorimetrically.The sensitivity and accuracy of photometric methods must be frequentlychecked by testing standard solutions in order to detect electrical, optical, ormechanical malfunctions in the analytical instrument.

    Spectrophotometry and Colorimetry

    Spectrophotometryinvolves analysis by the measurement of the light absorbed bya solution. The absorbance is proportional to the concentration of the analytein solution. Spectrophotometric methods are most often used for the analysisof metals with concentrations of up to 2%.Spectrophotometers consist of a light source (tungsten or hydrogen), a monochromator,a sample holder, and a detector. Ultraviolet or visible light of a definitewavelength is used as the light source. Detectors are photoelectric cells thatmeasure the transmitted (unabsorbed) light. Spectrophotometers differ fromphotometers in that they utilize monochromators, whereas photometers use fil-ters to isolate the desired wavelength region. Filters isolate a wider band of light.In spectrophotometric titrations, the cell containing the analyte solutionis placed in the light path of a spectrophotometer. Titrant is added to the cellwith stirring, and the absorbance is measured. The endpoint is determinedgraphically. Applications of this titration include the analysis of a mixture ofarsenic and antimony and the analysis of copper with ethylene diamine tetraacetic acid (EDTA).The possibility of errors in spectrophotometric analyses is increased whennumerous dilutions are required for an analysis.Colorimetryinvolves comparing the color produced by an unknown quantityof a substance with the color produced by a standard containing a known quantityof that substance. When monochromatic light passes through the coloredsolution, a certain amount of the light, proportional to the concentration of thesubstance, will be absorbed. Substances that are colorless or only slightly coloredcan be rendered highly colored by a reaction with special reagents.In the standard series colorimetric method, the analyte solution is diluted toa certain volume (usually 50 or 100 ml) in a Nessler tube and mixed. The colorof the solution is compared with a series of standards similarly prepared. Theconcentration of the analyte equals the concentration of the standard solutionwhose color it matches exactly. Colors can also be compared to standards via acolorimeter (photometer), comparator, or spectrophotometer.The possible errors in colorimetric measurements may arise from the followingsources: turbidity, sensitivity of the eye or color blindness, dilutions, photometerfilters, chemical interferences, and variations in temperature or pH.Photometric methods are available for the analysis of the following analytes:Anodizing solutions: Fe, Cu, agents.

    Atomic Absorption

    Metals in plating and related solutions can be readily determined by AA spectrophotometry.Optimum ranges, detection limits, and sensitivities of metals varywith the various available instruments.In direct-aspiration atomic absorption(DAAA) analysis, the flame (usually air-acetyleneor nitrous oxide-acetylene) converts the sample aerosol into atomic vapor,which absorbs radiation from a light source. A light source from a hollow cathodelamp or an electrodeless discharge lamp is used, which emits a spectrum specificto the element being determined. The high cost of these lamps is a disadvantageof the AA method. A detector measures the light intensity to give a quantitativedetermination.DAAA is similar to flame photometry in that a sample is aspirated into a flameand atomized. The difference between the two methods is that flame photometrymeasures the amount of emitted light, whereas DAAA measures the amount oflight absorbed by the atomized element in the flame. In DAAA, the number ofatoms in the ground state is much greater than the number of atoms in any of theexcited states of the spectroscopic methods. Consequently, DAAA is more efficientand has better detection limits than the spectroscopic methods.Spectral interferences occur when a wavelength of an element being analyzedis close to that of an interfering element. The analysis will result in an erroneouslyhigh measurement. To compensate for this interference, an alternate wavelengthor smaller slit width is used.When the physicalproperties (e.g., viscosity) of a sample differ from those of thestandard, matrix interferences occur. Absorption can be enhanced orsuppressed.To overcome these interferences, matrix components in the sample and standardare matched or a release agent, such as EDTA or lanthanum, is added.Chemical interferences are the most common interferences encountered in AAanalysis. They result from the nonabsorption of molecularly bound atoms in theflame. These interferences are minimized by using a nitrous oxide-acetylene flameinstead of an air-acetylene flame to obtain the higher flame temperature neededto dissociate the molecule or by adding a specific substance (e.g.,lanthanum) torender the interferant harmless. Chemical interferences can also be overcome byextracting the element being determinedor by extracting the interferant fromthe sample.The sensitivity and detection limits in AA methods vary with the instrumentused, the nature of the matrix, the type of element being analyzed, and the particularAA technique chosen. It is best to use concentrations of standards andsamples within the optimum concentration range of the AA instrument. WhenDAAA provides inadequate sensitivity, other specialized AA methods, such asgraphite furnace AA, cold vapor AA, or hydride AA, are used.Ingraphite furnace AA(GFAA), the flame that is used in DAAA is replacedwith an electrically heated graphite furnace. A solution of the analyte is placedin a graphite tube in the furnace, evaporated to dryness, charred, and atomized.The metal atoms being analyzed are propelled into the path of the radiationbeam by increasing the temperature of the furnace and causing the sample tobe volatilized. Only very small amounts of sample are required for the analysis.GFAA is a very sensitive technique and permits very low detection limits. Theincreased sensitivity is due to the much greater occupancy time of the groundstate atoms in the optical path as compared with DAAA. Increased sensitivity canalso be obtained by using larger sample volumes or by using an argon-hydrogenpurge gas mixture instead of nitrogen. Because of its extreme sensitivity, determiningthe optimum heating times, temperature, and matrix modifiers is necessaryto overcome possible interferences.Interferences may occur in GFAA analysis due to molecular absorption andchemical effects. Background corrections compensate for the molecular absorptioninterference. Specially coated graphite tubes minimize its interaction withsome elements. Gradual heating helps to decrease background interference, andpermits determination of samples with complex mixtures of matrix components.The GFAA method has been applied to the analysis of aluminum, antimony,arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead,manganese, molybdenum, nickel, selenium, silver, and tin.Cold vapor atomic absorption(CVAA) involves the chemical reduction of mercuryor selenium by stannous chloride and its subsequent analysis. The reduced solutionis vigorously stirred in the reaction vessel to obtain an equilibrium betweenthe element in the liquid and vapor phases. The vapor is then purged into anabsorption cell located in the light path of a spectrophotometer. The resultantabsorbance peak is recorded on a strip chart recorder.The extremely sensitive CVAA procedure is subject to interferences from someorganics, sulfur compounds, and chlorine. Metallic ions (e.g., gold, selenium),which are reduced to the elemental state by stannous chloride, produce interferencesif they combine with mercury.Hydride atomic absorption(HAA) is based on chemical reduction with sodiumborohydride to selectively separate hydride-forming elements from a sample.The gaseous hydride that is generated is collected in a reservoir attached to ageneration flask, and is then purged by a stream of argon or nitrogen into anargon-hydrogen-air flame. This permits high-sensitivity determinations of antimony,arsenic, bismuth, germanium, selenium, tellurium, and tin.The HAA technique is sensitive to interferences from easily reduced metalssuch as silver, copper, and mercury. Interferences also arise from transitionmetals in concentrations greater than 200 mg/L and from oxides of nitrogen.

    Ion Chromatography

    In ion chromatography (IC), analytes are separated with an eluent on a chromatographiccolumn based on their ionic charges. Because plating solutionsare water based, the soluble components must be polar or ionic; therefore, IC isapplicable to the analysis of plating and related solutions.Ion chromatographs consist of a sample delivery system, a chromatographicseparation column, a detection system, and a data handling system.IC permits the rapid sequential analysis of multiple analytes in one sample. Thevarious detectors available, such as UV-visible, electrochemical, or conductivity,allow for specific detection in the presence of other analytes. IC is suitable for theanalysis of metals, anionic and cationic inorganic bath constituents, and variousorganic plating bath additives. It is also used for continuous on-line operations.Interferences arise from substances that have retention times coinciding withthat of any anion being analyzed. A high concentration of a particular ion mayinterfere with the resolution of other ions. These interferences can be greatlyminimized by gradient elution or sample dilution.IC has been applied to the analysis of the following analytes in plating andrelated solutions:Metals:Aluminum, barium, cadmium, calcium, trivalent and hexavalent chromium,cobalt, copper, gold, iron, lead, lithium, magnesium, nickel, palladium,platinum, silver, tin,zinc.Ions:Ammonium, bromide, carbonate, chloride, cyanide, fluoborate, fluoride,hypophosphite, nitrate, nitrite, phosphate, potassium,sodium, sulfate, sulfide,sulfite.Acid Mixtures:Hydrofluoric, nitric, and acetic acids.Organics:Brighteners, surfactants, organic acids.

    ELECTROANALYTICAL METHODS

    Electroanalytical methods involve the use of one or more of three electrical quantities—current, voltage, and resistance. These methods are useful when indicatorsfor a titration are unavailable or unsuitable. Although trace analysis may be donequite well by spectroscopic or photometric methods, electroanalytical methodsoffer ease of operation and relatively lower costs of purchase and maintenance.

    Potentiometry

    Potentiometry involves an electrode that responds to the activity of a particulargroup of ions in solution. Potentiometric methods correlate the activity of anion with its concentration in solution.In potentiometric titrations, titrant is added to a solution and the potentialbetween an indicator and reference electrode is measured. The reaction mustinvolve the addition or removal of an ion for which an electrode is available.Acid-base titrations are performed with a glass indicator electrode and a calomelreference electrode. The endpoint corresponds to the maximum rate of changeof potential per unit volume of titrant added.Advantages of potentiometric titrations include its applicability to colored,turbid, or fluorescent solutions. It is also useful in situations where indicatorsare unavailable.The sensitivity of potentiometric titrations is limited by the accuracy of themeasurement of electrode potentials at low concentrations. Solutions thatare more dilute than 10-5N cannot be accurately titrated potentiometrically.This is because the experimentally measured electrode potential is a combinedpotential, which may differ appreciably from the true electrode potential. Thedifference between the true and experimental electrode potentials is due to theresidual current, which arises from the presence of electroactive trace impurities.The direct potentiometric measurement of single ion concentrations is donewith ion selective electrodes (ISEs). The ISE develops an electric potential inresponse to the activity of the ion for which the electrode is specific. ISEs areavailable for measuring calcium, copper, lead, cadmium, ammonia, bromide,nitrate, cyanide, sulfate, chloride, fluoride, and other cations and anions.Cation ISEs encounter interferences from other cations, and anion ISEsencounter interferences from other anions. These interferences can be eliminatedby adjusting the sample pH or by chelating the interfering ions. ISEinstructions must be reviewed carefully to determine the maximum allowablelevels of interferants, the upper limit of the single ion concentration for the ISE,and the type of media compatible with the particular ISE.Some of the solutions that can be analyzed by potentiometric methods are:Anodizing solutions: Al,

    Anodizing solutions: Al, H2SO4, C2H2O4, CrO3, Cl

    Brass solutions: Cu, Zn, NH3, CO3

    Bronze solutions: Cu, Sn, NaOH, NaCN, Na2CO3

    Chromium solutions: Cr, Cl

    Cadmium solutions: Cd, NaOH, NaCN, Na2CO3

    Acid copper solutions: Cl

    Alkaline copper solutions: NaOH, NaCN, Na2CO3

    Gold solutions: Au, Ag, Ni, Cu

    Lead and tin/lead solutions: Pb, Sn, HBF4

    Nickel solutions: Co, Cu, Zn, Cd, Cl, H3BO3

    Silver solutions: Ag, Sb, Ni

    Acid tin solutions: Sn, HBF4, H2SO4

    Alkaline tin solutions: Sn, NaOH, NaCO3, Cl

    Conductometry

    Electrolytic conductivity measures a solution’s ability to carry an electric current.A current is produced by applying a potential between two inert metallicelectrodes (e.g., platinum) inserted into the solution being tested. When othervariables are held constant, changes in the concentration of an electrolyte resultin changes in the conductance of electric current by a solution.In conductometric titrations, the endpoint of the titration is obtained from aplot of conductance against the volume of titrant. Excessive amounts of extraneousforeign electrolytes can adversely affect the accuracy of a conductometrictitration.Conductometric methods are used when wet or potentiometric methodsgive inaccurate results due to increased solubility (in precipitation reactions)or hydrolysis at the equivalence point. The methods are accurate in both diluteand concentrated solutions, and they can also be used with colored solutions.Conductometric methods have been applied to the analysis of Cr, Cd, Co, Fe,

    Ni, Pb, Ag, Zn, CO3, Cl, F, and SO4.

    Polarography

    In polarography, varying voltage is applied to a cell consisting of a large mercuryanode (reference electrode) and a small mercury cathode (indicator electrode)known as a dropping mercury electrode (DME). Consequent changes in currentare measured. The large area of the mercury anode precludes any polarization.The DME consists of a mercury reservoir attached to a glass capillary tube withsmall mercury drops falling slowly from the opening of the tube. A saturatedcalomel electrode is sometimes used as the reference electrode.The electrolyte in the cell consists of a dilute solution of the species beingdetermined in a medium of supporting electrolyte. The supporting electrolytefunctions to carry the current in order to raise the conductivity of the solution.This ensures that if the species to be determined is charged, it will not migrateto the DME. Bubbling an inert gas, such as nitrogen or hydrogen, through thesolution prior to running a polarogram, will expel dissolved oxygen in order toprevent the dissolved oxygen from appearing on the polarogram.Reducible ions diffuse to the DME. As the applied voltage increases, negligiblecurrent flow results until the decomposition potential is reached for the metalion being determined. When the ions are reduced at the same rate as they diffuseto the DME, no further increases in current occur, as the current is limited bythe diffusion rate. The half-wave potential is the potential at which the currentis 50% of the limiting value.Polarograms are obtained by the measurement of current as a function ofapplied potential. Half-wave potentials are characteristic of particular substancesunder specified conditions. The limiting current is proportional to the concentrationof the substance being reduced. Substances can be analyzed quantitativelyand qualitatively if they are capable of undergoing anodic oxidation orcathodic reduction. As with other instrumental methods, results are referred tostandards in order to quantitate the method.Advantages of polarographic methods include their ability to permit simultaneousqualitative and quantitative determinations of two or more analytes inthe same solution. Polarography has wide applicability to inorganic, organic,ionic, or molecular species.Disadvantages of polarography include the interferences caused by large concentrationsof electropositive metals in the determination of low concentrationsof electronegative metals. The very narrow capillary of the DME occasionallybecomes clogged.Polarographic methods are available for the following solutions:

    Anodizing solutions: Cu, Zn, Mn

    Brass solutions: Pb, Cd, Cu, Ni, Zn

    Bronze solutions: Pb, Zn, Al, Cu, Ni

    Cadmium solutions: Cu, Pb, Zn, Ni

    Chromium solutions: Cu, Ni, Zn, Cl, SO4

    Acid copper solutions: Cu, Cl

    Alkaline copper solutions: Zn, Fe, Pb, Cu

    Gold solutions: Au, Cu, Ni, Zn, In, Co, Cd

    Iron solutions: Mn

    Lead and tin-lead solutions: Cu, Cd, Ni, Zn, Sb

    Nickel solutions: Cu, Pb, Zn, Cd, Na, Co, Cr, Mn

    Palladium solutions: Pd, Cr3+, Cr6+

    Rhodium solutions: Rh

    Silver solutions: Sb, Cu, Cd

    Acid tin solutions: Sn4+, Cu, Ni, Zn

    Alkaline tin solutions: Pb, Cd, Zn, Cu

    Acid zinc solutions: Cu, Fe, Pb, Cd

    Alkaline zinc solutions: Pb, Cd, Cu

    Wastewater: Cd, Cu, Cr3+, Ni, Sn, Zn

    AMPEROMETRY

    Amperometric titrations involve the use of polarography as the basis of an electrometrictitration. Voltage applied across the indicator electrode (e.g., DME orplatinum) and reference electrode (e.g., calomel or mercury) is held constantand the current passing through the cell is measured as a function of titrantvolume added. The endpoint of the titration is determined from the intersectionof the two straight lines in a plot of current against volume of titrant added.Polarograms are run to determine the optimum titration voltage.Amperometric titrations can be carried out at low analyte concentrations atwhich volumetric or potentiometric methods cannot yield accurate results. Theyare temperature independent and more accurate than polarographic methods.Although amperometry is useful for oxidation-reduction or precipitationreactions,few acid-base reactions are determined by this method.Some of the reactions that can be analyzed by amperometric methods aregiven in Table II.

    ELECTROGRAVIMETRY

    In electrogravimetry, the substance to be determined is separated at a fixed potentialon a preweighed inert cathode, which is then washed, dried, and weighed.Requirements for an accurate electrogravimetric analysis include good agitation,smooth adherent deposits, and proper pH, temperature, and current density.Advantages of electrogravimetry include its ability to remove quantitativelymost common metals from solution. The method does not require constantsupervision. Disadvantages include long electrolysis times.Some of the metals that have been determined electrogravimetrically arecadmium, cobalt, copper, gold, iron, lead, nickel, rhodium, silver, tin, and zinc.

    SAMPLING

    Analyses are accurate only when the sample is truly representative of the solutionbeing analyzed. Each tank should have a reference mark indicating the correct levelfor the solution, and the bath should always be at this level when the sample istaken. Solutions should be stirred before sampling. If there is sludge in the tank,the solution should be stirred at the end of the day and the bath allowed to standovernight, taking the sample in the morning.Solutions should be sampled by means of a long glass tube. The tube isimmersed in the solution, the thumb is placed over the upper open end, and afull tube of solution is withdrawn and transferred to a clean, dry container. Thesolution should be sampled at a minimum of 10 locations in the tank to ensure arepresentative sample. A quart sample is sufficient for analysis and Hull cell testing,and any remaining solution can be returned to its tank.

    STANDARD SOLUTIONS, REAGENTS, AND INDICATORS FOR WET

    METHODS

    Standard solutions, reagents, and indicators can be purchased ready-made fromlaboratory supply distributors. Unless a laboratory has the experience and highdegree of accuracy that is required in preparing these solutions, it is recommendedthat they be purchased as prepared solutions. Preparations for all the solutions aregiven here to enable technicians to prepare or recheck their solutions.A standard solution is a solution with an accurately known concentration ofa substance used in a volumetric analysis. Standardization of standard solutionsrequires greater accuracy than routine volumetric analyses. An error in standardizationcauses errors in all analyses that are made with the solution; therefore,Primary Standard Grade chemicals should be used to standardize standard solutions.The strengths of standard solutions are usually expressed in terms of normalityor molarity. Normalities of standard solutions and their equivalent molarities arelisted in Table III. The methods to standardize all the standard solutions requiredfor the analysis of plating and related solutions are listed in Table IV.Indicators are added to solutions in volumetric analyses to show color changeor onset of turbidity, signifying the endpoint of a titration. The indicators requiredfor all of the analyses and their preparations are listed in Table V. Analytical Gradechemicals should be used in preparing analytical reagents (Table VI) and ReagentGrade acids should be used (Table VII). When chemicals of lesser purity are used,the accuracy of the results will be diminished.Tables VIII through XII provide specific methods for testing the constituentsof electroplating, electroless, and anodizing baths, as well as acid dips and alkalinecleaners.

    ???

    Fig. 1. Test setup for determination of cathode efficiency. Use 500-ml beakers and

    1 ´ 2-in. brass cathodes. The anodes for the test solution should match that used in the

    plating bath. Use copper anodes for the coulometer.

    SAFETY

    As with any laboratory procedure, the accepted safety rules for handling acids,bases, and other solutions should be followed. Acids are always added to water,not the reverse. Mouth pipettes should not be used for pipetting plating solutions.Safety glasses should always be worn, and care should be exercised to avoidskin and eye contact when handling chemicals. A fume hood should be usedwhen an analytical method involves the liberation of hazardous or annoyingfumes. Laboratory staff should be well versed in the first-aid procedures requiredfor various chemical accidents.

    DETERMINATION OF CATHODE EFFICIENCY

    The procedure for determining cathode efficiency, using the setup pictured inFig. 1, is as follows:

    1. Connect the copper coulometer in series with the test cell.

    2. The copper coulometer solution should contain 30 oz/gal copper sulfatepentahydrate and 8 oz/gal sulfuric acid.

    3. Use the same anodes, temperature, and agitation in the test solution thatare used in the plating bath.

    4. Plate at 0.4 A (30 A/ft2) for a minimum of 10 minutes.

    5. Rinse both cathodes, dry in acetone, and weigh.% Cathode Efficiency =weight in grams of test metal X valence of test metal in bath X 3177weight in grams of copper metal « atomic weight of test metal

    *Editor’s note: To view this article in its entirety, including corresponding tables,

    please consult the online Guidebook archive.

    493

  • آنالیز شیمیایی محلول های آبکاری از نگاه متال فینیشینگ 2003

    آنالیز شیمیایی محلول های آبکاری از نگاه متال فینیشینگ 2003

    واحد تحقیق و توسعه شرکت جلاپردازان

    محلول های آبکاری به منظور کنترل فرمولاسیون حمام و همینطور پیشگیری از مشکلات مربوط به هریک از اجزای حمام، باید مرتبا آنالیز شوند. از طرفی سطح آلودگی محلول نیز باید توسط این آنالیز شیمیایی همواره تحت کنترل باشد. صنعتگران آبکاری برای اطمینان از حداکثر بازدهی محلول و یکنواختی رسوبات، مشخصاتی را برای محلول درنظر می گیرند. فاکتورهای مختلفی که باعث می شوند غلظت اجزای حمام از مقدار بهینه خود منحرف شوند عبارتند از:

    1-    بیرون آمدن بخشی از محلول مثلا همراه با خروج قطعه

    2-    تبخیر محلول

    3-    تجزیه شیمیایی محلول

    4-    ضریب بازدهی یکسان آند و کاتد

    مشخص شده است که یکی از مشکلات مربوط به بازده محلول های آبکاری عبارت است از تغییرات تدریجی اما پیوسته درpH، محتوای فلزی و یا مقدار سیانید محلول (جدول 1 را ببینید). تکنیکهای مورد استفاده برای آنالیزهای کمی محلولهای آبکاری بصورت تکنیکهای حجم سنجی (تیتراسیون)، وزن سنجی و دستگاهی طبقه بندی می شوند.  

    روشهای وزن سنجی و حجم سنجی اصولا تحت عنوان روشهای مرطوب شناخته میشوند. با توجه به تعدد روشهای آنالیز، انتخاب بهترین روش آنالیز باید بر اساس ویژگیهای محلول، در نظر گرفتن هزینه های اقتصادی و موثر بودن روش برای محلول خاص توسط آنالیزگر انجام شود. روشهای مرطوبی که در اینجا مطرح می­شود برای کنترل همه فرایندهای آبکاری به اندازه کافی ساده، دقیق و سریع می باشند. تجهیزات مورد نیاز برای این روشها بسیار معمولی و در حد امکانات معمولی در یک واحد آزمایشگاهی ساده می باشد و دستورالعمل ها به اندازه کافی دقیق است که یک تکنسین معمولی بدون هیچ مشکلی می تواند آنها را انجام بدهد. این در حالی است که اگر هدف شناسایی مقادیر کم ناخالصی و یا فلزهای غیرمعمول باشد نمونه باید به یک واحد آزمایشگاهی مجهز که پرسنل آن از توانایی بالایی در دانش شیمی برخوردارند ارجاع شود. تستHull cell به اپراتور این امکان را میدهد تا کیفیت پوشش در بازه گسترده­ای از دانسیته جریان بررسی کند.

    جدول 1: مشکلات ایجاد شده بدلیل عدم تناسب بازده کاتدی و آندی
    علت مشکل
    بازده آندی بالا pH بالا
    بازده کاتدی بالا pH پایین
    بازده آندی بالا مقدار زیاد فلز
    بازده کاتدی بالا مقدار کم فلز
    بازده آندی پایین سیانید آزاد زیاد
    بازده آندی بالا سیانید آزاد کم

    روشهای حجم سنجی

    روشهایی که در آن غلظت نمونه مورد نظر در محلول آبکاری با اضافه کردن یک محلول شناخته شده استاندارد به محلول مورد آزمایش (در اینجا نمونه محلول وان) بصورت کمی تعیین می شود، اصولا تحت عنوان روشهای حجم سنجی شناخته می شوند. جزئی که باید شناسایی شود باید بطور کامل با عامل تیتر کننده با نسبت استوکیومتری معلوم واکنش دهد. بر اساس حجم مصرفی محلول تیترانت، می­توان غلظت گونه مورد نظر را براحتی محاسبه نمود. سادگی، سرعت و هزینه نسبتا پایین این روش باعث شده تا این روش یکی از پرکاربردترین روشهای آنالیز شیمیایی محلول های آبکاری باشد.

    روشهای حجم سنجی شامل چندین نوع واکنش می­باشند: اکسایش- کاهش، اسید-باز، تشکیل کمپلکس و رسوب. شناساگرها بعنوان معرفهای کمکی هستند که به تشخیص نقطه پایان آنالیز کمک می­کنند. نقطه پایان می­تواند توسط تغییر رنگ محلول، کدر شدن محلول، یا برطرف شدن کدورت محلول تشخیص داده شود.

    در برخی روشهای حجم سنجی به مقدار کمی نمونه نیاز است درحالی که در برخی موارد بعضا نمونه بیشتری مورد نیاز می باشد. مشخص شده است که دقت اندازه گیری برای آنالیز محلولهایی که غلظت عامل تیتر شونده در آنها خیلی کم است کاهش می­­­­یابد زیرا تشخیص نقطه پایانی در آنها به سادگی محلولهایی که در آنها عامل تیتر شونده غلظت بالایی دارند، نمی باشد.

    برای رسیدن به نتیجه دلخواه برخی پارامترها باعث محدود شدن دامنه کاربرد روهای حجم سنجی می شوند. از جمله اینکه  شناساگرها باید بتوانند نقطه پایان را بخوبی نشان دهند و همچنین واکنش جزء تیتر شونده با محلول استاندارد در حضور شناساگر نباید توسط سایر مواد موجود در محلول، تداخل و همپوشانی داشته باشد.

    روشهای وزن سنجی

    در روشهای وزن سنجی، تعیین جزء مورد نظر در محلول با جداسازی آن جزء از سایر اجزای محلول توسط ترسیب، تبخیر یا دستگاه تجزیه الکتریکی انجام می شود. روش­های ترسیب از روشهای مهم در فرایند وزن سنجی می باشند. رسوب حاصل اصولا یک ترکیب با انحلال پذیری بسیار کم و خلوص بالا است. وزن رسوب بعد از فیلتراسیون محلول، شستن و خشک کردن آن اندازه گیر می­شود. روشهای وزن سنجی برای تکمیل روشهای حجم سنجی استفاده می­شوند. محدودیتهای روشهای وزن سنجی عبارتند از اینکه گونه ترسیب شده باید از در محلول بسیار نامحلول باشد. رسوب باید همچنین خلوص بسیار بالایی داشته باشد و به سهولت فیلتر شود. گونه هایی که بصورت وزن سنجی آنالیز میشوند عبارتند از کلرید، سولفات، کربنات، طلا و نقره.

    روشهای دستگاهی

    روشهای دستگاهی با روشهای مرطوب متفاوت هستند زیرا در روشهای دستگاهی ویژگی های فیزیکی مربوط به ترکیب یک ماده اندازه گرفته می شود در حالیکه روشهای مرطوب مبتنی بر انجام واکنش های شیمیایی هستند. انتخاب روش دستگاهی مناسب برای آنالیز یک محلول آبکاری وظیفه سنگینی است. آنالیزگر باید هزینه تمام شده آزمایش و همچنین دقت روش انتخاب شده برای محلول آبکاری مورد نظر را حتما در انتخاب خود لحاظ کند. دستگاههایی که به کامپیوتر متصل می شوند، می توانند به صورت خودکار نتایج را تجزیه و تحلیل کرده و ثبت کنند. به این ترتیب خطای محاسباتی به حداقل خود رسیده و نتایج حاصل نسبت به روشهای مرطوب تکرار پذیرتر می باشد. روشهای دستگاهی همچنین بسیار سریعتر از روشهای مرطوب هستند.

    برخلاف انسانها، دستگاهها نمی توانند قضاوت کنند. اگر نمونه ای درست آماده نشده باشد یا گونه ها باهم تداخل داشته باشند برای دستگاه قابل تشخیص  نیست. برخی نتایج غلط می تواند ناشی از مشکلات الکترونیکی دستگاه باشد.

    دستگاههای مورد استفاده برای آنالیز محلولهای آبکاری عمدتا جزو دستگاهی طیف سنجی، فوتومتری، کروماتوگرافی، و الکتروآنالیز طبقه می­شوند. روشهای اسپکتروسکوپی یا طیف سنجی (فوتومتری شعله، طیف سنجی نشری، فلورسانسX-ray، طیف سنجی جرمی، و پلاسمای جفت شده القایی) برپایه نشر نور می­باشند. روشهای فوتومتری (اسپکتروفوتومتری، کالریمتیری و جذب اتمی) برپایه جذب نور می­باشند. روشهای کروماتوگرافی (یون کروماتوگرافی) شامل جداسازی مواد و سپس شناسایی آن می شود. روشهای الکتروآنالیز (پتانسیومتری، هدایت سنجی، پلاروگرافی، آمپر سنجی و الکتروگروی متری) مبتنی بر یک جریان الکتریکی در مسیر آنالیز هستند.

    روش های دستگاهی که بصورت مفصل در زیر بررسی می شوند عمدتا روشهایی هستند که برای محیط های آبکاری مناسب تر هستند.

    روشهای طیف سنجی

    طیف سنجی عبارت است از آنالیز یک ماده توسط اندازه گیری نور نشر یافته. هنگامی که به یک اتم گرما، انرژی الکتریکی یا انرژی رادیویی داده می شود، اتم اتتم تهییج می شود و نور را نشر می­دهد. تهییج می تواند توسط یک شعله، جرقه، اشعه ایکس یا یک قوسAC یاDC ایجاد شود. الکترونها در اتم از حالت پایه خود تحریک می شوند و به یک تراز انرژی ناپایدار با سطح انرژی بالاتر می روند. این الکترونهای تههیج شده هنگام بازگشت به سطح انرژِ پایه خود، انرژی را که برای تهییج شدن گرفته بودند بصورت تابش الکترومغناطیسی رها یا منتشر می کنند.

    از آنجایی که هر عنصر حاوی اتم هایی با آرایش مختلف الکترون های لایه خارجی می باشد لذا مجموعه ای از طول موج های متمایز به دست می آید. این طول، موجها، ناشی از اتمهای چندین عنصر، توسط یک تک فام کننده مانند یک منشور یا توری پراکنش از یکدیگر جدا می شوند. تشخیص طول موجها می تواند بصورت فتوگرافیکی (اسپکتروگراف) و یا از طریق دتکتورهای فتوالکتریک مستقیم (اسپکتروفوتومتر) انجام شود. اندازه گیری شدت نور نشر شده در یک طول موج خاص متناسب با غلظت عنصری است که آنالیز می شود. مزیت طیف سنجی این است که این روش برای عنصر مورد بررسی خاص است. این موضوع کمک می کند تا آنالیز کمی مقدار بسیار کم عناصر را بدون نیاز به پیس آماده سازی و یا اطلاع قبلی از ماهیت محلول و حضور یا عدم حضور سایر عناصر و بصورت مستقل انجام بدهیم. در این روش اغلب فلزات و برخی ترکیبات غیر فلزی قابل شناسایی هستند. آنالیز اسپکتروسکوپی همچنین از این جهت که تکرار پذیر است با ارزش می باشد. اما از معایب این روش می توان به مواردی همچون وابستگی شدت نور نشری به دما، بصورتی که شدت به نوسانات کوچک دمایی بسیار حساس است. صحت و دقت روشهای اسپکتروگرافی به اندازه روشهای اسپکتروفوتومتری یا روشهای مرطوب نمی باشد. روشهای اسپکتروگرافی عموما از این جهت که حد تشخیص (حداقل مقدار قابل تشخیص برای دستگاه)  آنها غلظت 3% عنصر است دارای محدودیت می باشند. علاوه بر این، برای عناصر با انرژی بالا مانند زینک کمتر از عناصر با انرژی کم مانند سدیم است. کاربرد اسپکتروسکوپی شامل آنالیز اجزای اصلی و ناخالصی ها در محلول های آبکاری و رسوب آلیاژی برای ترکیبات است.

    فتومتری شعله

    در فتومتری شعله، نمونه محلول در فشار هوای ثابت اتمیزه شده و بصورت یک مه دود یکنواخت وارد شعله می شود. دمای شعله(1,800-3,100 OK) ثابت نگاه داشته می شود. حلال تبخیر می شود و جامد بخار میشود و سپس به اتمها در حالت پایه تفکیک می شود. الکترونهای لایه والانس اتمهای حالت پایه توسط انرژی شعله تهییج شده و به سطوح بالاتر رفته و مجددا به حالت پایه باز می گردند. شدت خطوط طیف نشر شده در یک اسپکتروگراف تعیین شده و یا توسط یک اسپکتروفوتومتر مستقیما اندازه گیری می شود. فتومتر شعله با استانداردهایی که غلظت و ترکیب آنها مشخص است کالیبره میشود. سپس شدت یک خط طیفی مشخص ناشناخته می تواند با مقدار یک عنصر موجود که تابش خاصی را منتشر می کند، همبسته شود. تداخل های فیزیکی ناشی از حلال یا حلال شونده ممکن است بر میزان انتقال نمونه به شعله تاثیر بگذارد. هنگامی که طول موج عنصر مورد نظرتقریبا همان طول یک عنصر دیگر باشد، نشرهای این خطوط مجاور دارای تداخلهای طیفی خواهد بود. یک تک فام کننده یا انتخاب سایر خطوط طیفی این تداخل را به حداقل می رساند. تداخل یونیزاسیون ممکن است توسط شعله های دما بالاتر رخ دهد. با اضافه کردن یک عنصر دم با قابلیت یونیزاسیون، به دلیل یونیزاسیون این عنصر، تداخلها به حداقل می­رسند. مزیت فوتومتری شعله این است که دمای شعله در این حالت نسبت به منابع الکتریکی بسیار با ثبات تر است. یک ایراد این روش این است که حساسیت منبع شعله چندین بار کوچکتر از یک قوس الکتریکی یا جرقه است. از فوتومتری شعله برای آنالیز آلومینیوم، بور،کادمیوم، کلسیم، کروم، کبالت، مس، منیزیم، آهن، سرب، لیتیم، منیزیم، نیکل، پالادیوم، پلاتین، پتاسیم، رودیوم، روتنیم، نقره، سدیم مورد استفاده قرار می گیرد. ، استرانسیم، قلع و روی استفاده می شود.

    طیف سنجی نشری

    در طیف سنجی نشری (ES)، یک نمونه جامد، فلز ریخته گری یا محلول توسط یک تخلیه الکتریکی از قبیل یک قوسAC، یک قوسDC یا یک جرقه تهیییج می شود. نمونه معمولا در حفره الکترود گرافیت پایینتر که مثبت است، قرار می گیرد. امکترود همراه بالاتر نیز از جنس گرافیت است. گرافیت به علت توانایی بالای خود برای مقاومت در برابر دمای بالا تخلیه الکترود، ماده مناسبی ربرای تهیه و ساخت الکترودها بشمار می­رود. از طرفی گرافیت یک هادی الکتریکی خوب است و بدلیل عدم ایجاد خطوط طیفی مربوط به خود امکان ایجاد تداخل طیفی را ندارد. قوس زمانی ایجاد می شود که دو الکترود گرافیتی یک لحظه کوتاه باهم تماس داشته باشند و سپس از هم جدا شوند. دماهای بسیار بالا (K 6000-4000) باعث تولید تابش اشعه با سطح انرژی و تعداد خطوط طیفی بیشتر در مقایسه با فوتومتری شعله می شود. طول موج مشخصی از اتم های چندین عنصر توسط یک تک فلوتر جدا شده و توسط اسپکتوگراف یا اسپکتروفتومتر شناسایی می شوند. طول موجهای مشخص از از اتمهای چندین عنصر توسط یک مونوکروماتور تفکیک می شوند و توسط اسپکتروگراف یا اسپکتروفوتومتر شناسایی می شوند. شناسایی کیفی با استفاده از نمودارها و جداول موجود برای شناسایی خطوط طیفی که طیف سنج خروجی بر اساس طول موج آنها مرتفع می شود انجام می شود.

    عناصر موجود در یک نمونه همچنین می توانند بصورت کیفی با مقایسه طیف ناشناخته با نمونه های عناصرخالص شناسایی شوند. دانسیته طول موجها متناسب با غلظت عنصری تعیین شده است. کالیبراسیون توسط نمونه های استاندارد انجام می گیرد. طیف سنجی نشری یک روش مفید برای آنالیز مقادیر بسیار کم آلاینده های فلزی در حمام آبکاری است. روش“oxide” یم تکنیک معمول برای آنالیز کمی در طیف سنجی نشری است. یک نمونه از حمام آبکاری در یک خشک کن تبخیر شده و سپس در یک کوره سوزانده می شود. اکسیدهای حاصل با گرافیت مخلوط شده و در یک الکترود گرافیتی قرار داده می شوند. استانداردها به روش مشابه تهیه می شوند و یک قوسDC برای تهییج نمونه و استاندارد استفاده می شود.

    فلورسانس اشعهX

    طیف سنجی فلورسانس اشعهX یا(XRF) بر اساس تهییح نمونه ها توسط یک منبع اشعه ایکس انرژی با کافی بالا است که منجر به انتشار تابش فلورسنت می شود. غلظت عنصری که قرار است شناسایی شود متناسب با شدت طول موج شاخصه آن است. یک طیف سنجXRF معمولی متشکل از یک منبع تابش پرتوX، یک شناساگر و یک بخش تحلیل کننده داده ها است. مزایایXRF شامل غیر تخریبی بودن روش است.روش XRF برای اندازه گیری اجزای اصلی حمام های آبکاری مانند کادمیوم، کروم، کبالت، طلا، نیکل، نقره، قلع و روی مفید است. معایبXRF عبارتند از عدم حساسیت آن در مقایسه باES. همچنین می توان از طیف سنجی اشعه ایکس برای اندازه گیری ضخامت یک پوشش آبکاری شده نیز استفاده می شود. آشکارساز اشعه ایکس روی طول موج عنصر اندازه گیری شده قرار می گیرد. سطح پوشش در معرض یک منبع اشعه ایکس قرار گرفته و شدت طول موج عنصر اندازه گیری می شود. برای هر نوع پوشش آبکاری خاص، منحنی کالیبراسیون عبارت است از نمودار شدت در برابر ضخامت. با استفاده ازXRF همچنین می توان ترکیب پوشش را نیز تعیین کرد.

    طیف سنجی جرمی

    در طیف سنجی جرمی(MS)، گاز یا بخار حاصل از مایعات یا جامدات توسط یک پرتو الکترونی در یک اتاق یونیزاسیون بمباران می شود، که باعث یونیزاسیون و شکست پیوندهای شیمیایی می شود. در این فرایند ذرات بارداری تشکیل می شوند که ممکن است از عناصر، مولکول ها یا قطعات تشکیل شده باشند. سپس میدانهای الکتریکی و مغناطیسی یونهای حاصل را بر اساس نسبت جرم به بار ذرات(m/e) از هم جدا می کنند. مقدار و نوع قطعات تولید شده در یک چمبر یونیزاسیون برای انرژی خاصی از پرتو بمباران کننده، مشخصه مولکول است؛ بنابراین، هر ترکیب شیمیایی دارای طیف جرمی مخصوص به خود است. با ایجاد یک طیف جرمی از چند ترکیب خالص، یک الگوی مشاهده شده امکان شناسایی و تجزیه و تحلیل ترکیبات پیچیده را فراهم می آورد. طیف جرمی یک ترکیب شامل جرم قطعات یونها، فراوانی نسبی این یونها و همچنین یون مادر است. قطعات جداسازی شده برای یک ترکیب خاص همیشه در فراوانی نسبی یکسان رخ می دهند. روشMS برای همه موادی که دارای فشار بخار نسبتا بالا هستند قابل استفاده است که معمولا شامل موادی می شود که نقطه جوش زیر450oC دارند. با استفاده از این روش امکان آنالیز کیفی و کمی گازها، مایعات و جامدات فراهم می شود.

    پلاسمای القایی جفت شده

    پلاسمای حفت شده القایی(ICP) شامل آسپیراسیون یک نمونه در یک  جریانی از گاز آرگون و سپس یونیزاسیون آن با استفاده از یک میدان فرکانس رادیویی است. نمونه آئروسل در پلاسما گرم می شود،  مولکولها تقریبا بطور کامل از هم تفکیک می شوند و سپس اتمهای موجود در نمونه در فرکانس خاص خود نور را نشر می دهند. نور نشر شده از یک مونو کروماتور عبور کرده و به آشکارساز می­رسد. دمای بالای گاز پلاسمای آرگون (K7000) انتشار اتمی کارآمدی را تولیدمی­کند و امکان شناسایی برای بسیاری از عناصر با حد تشخیص پایین را فراهم می­کند. همانند روش جذب اتمی، درICP هم دستگاه قادر نیست بین حالتهای اکسایش متفاوت یک اتم تمایز قایل شود. مثلا اگر در نمونهCr3+ وCr6+ همزمان وجود داشته باشند، دستگاه مجموع هردو را بعنوان یک عدد واحد اعلام می کند. مزایایICP شامل یونیزاسیون کامل است و بر خلاف روش جذب اتمی در این روش ماتریس دخالت ندارد. با استفاده ازICP امکان تحلیل همزمان عناصر مختلف را در یک زمان کوتاه فراهم می شود. این روش به مقادیر یک در میلیون حساس است. معایبICP عبارتند از: هزینه بالای آن و عدم تحمل آن به نمونه هایی که مواد جامد محلول در آن بیش از  3 درصد باشند. اصلاحات پس زمینه معمولا برای مواجهه با تابش پس زمینه از عناصر دیگر و گازهای پلاسما جبران می شود. تداخل فیزیکی به علت گرانروی و یا کشش سطحی، می تواند خطاهای قابل توجهی ایجاد کند. این خطاها با رقیق کردن نمونه کاهش می یابد.اگر چه تداخل های شیمیایی در روشICP نامطلوب هستند، با انتخاب دقیق شرایط عملیاتی دستگاه، با تطبیق ماتریس یا بافر کردن نمونه، می توان آنها را به شدت کاهش داد.روشICP برای آنالیز اجزای اصلی و آلودگی های بسیار کم محلولهای آبکاری قابل استفاده است. این روش همچنین برای آنالیز زباله مفید است.

    روشهای فوتومتری

    روشهای فوتومتری براساس جذب انرژی تابشی اشعه ماوراء بنفش (200-400 نانومتر) یا نور مرئی (400 تا 1000 نانومتر) توسط یک گونه در محلول است. در این روش مقدار انرژی جذب شده متناسب با غلظت گونه های جاذب در محلول است.مقدار جذب توسط اسپکتروفتومتریک یا رنگ سنجی تعیین می شود.حساسیت و دقت روش های فوتومتریک به منظور تشخیص نقص های الکتریکی، نوری یا مکانیکی در ابزار تحلیلی باید با آزمایش محلولهای استاندارد به طور مرتب بررسی شود.

    اسپکتروفتومتری و رنگ سنجی

    اسپکتروفتومتری روشی است مبتنی بر اندازه گیری نور جذب شده توسط یک محلول. در این روش، جذب متناسب با غلظت آنالیت در محلول است. روشهای اسپکتروفتومتریک اغلب برای آنالیز فلزاتی با غلظت تا 2٪ استفاده می شوند.

    اسپکتروفتومترها شامل یک منبع نور (تنگستن یا هیدروژن)، یک تک فام کننده، یک نگهدارنده نمونه و یک آشکارساز هستند. نور ماورای بنفش یا نور مرئی با  یک طول موج مشخص بعنوان منبع نور استفاده می شوند. آشکارسازها سلولهای فوتوالکتریک هستند که نور انتقال یافته (غیر جذب شده) را اندازه می گیرند. اسپکتروفتومترها با فوتومترها متفاوتند، زیرا آنها از تک فام کننده استفاده می کنند، در حالی که فوتومترها از فیلترها برای جداسازی طول موج های مورد نظر استفاده می کنند. فیلترها یک نوار نور پهنتری را در مقایسه با تک فام کننده جداسازی می کنند. در تیتراسیونهای اسپکتروفتومتری، سل حاوی محلول آنالیت در مسیر نور دستگاه اسپکتروفتومتر قرار داده می شود. تیترانت در حالی که سل تکان داده می شود به آن اضافه می شود و جذب اندازه گیری می شود. نقطه پایانی به صورت گرافیکی تعیین می شود. کاربرد این تیتراسیون شامل آنالیز آرسنیک و آنتیموان و همچنین آنالیز مس با اتیلن دی آمین تترا استیک اسید (EDTA) است. زمانی که برای آنالیز به تعداد زیادی مرحله رقیق سازی نیاز باشد در اینصورت احتمال خطا در آنالیزهای اسپکتروفتومتری افزایش می یابد.

    کالریمتری شامل مقایسه رنگ تولید شده توسط مقدار نامعلومی از یک ماده با رنگ تولید شده توسط یک استاندارد حاوی مقدار معلوم از آن ماده است. هنگامی که نور تک رنگ از طریق محلول رنگی عبور می کند، مقدار مشخصی از نور، متناسب با غلظت ماده جذب می شود. موادی بیرنگ و یا حاوی مقدار اندکی رنگ، می توانند توسط واکنشبا برخی معرفهای خاص بسیار رنگی باشند. در روش استاندارد رنگی سنجی، محلول آنالیت تا یک حجم معین (معمولا 50 یا 100 میلی لیتر) در یک لولهNessler رقیق شده و مخلوط می شود. رنگ محلول مجهول با یک سری استانداردهایی که به روش مشابه تهیه شده­ان، مقایسه می­شود. غلظت آنالیت ، برابر است با غلظت محلول استاندارد ی که رنگ نمونه با آن دقیقا مطابقت دارد.

    خطاهای احتمالی در اندازه گیری های رنگی ممکن است از منابع زیر ایجاد شود: کدورت، حساسیت چشم یا کور رنگی، رقت ها، فیلترهای فوتومتر، تداخل های شیمیایی و تغییرات در دمای یاpH. روش های فوتومتریک برای آنالیز آنالیتهای زیر در دسترس هستند:

    محلولهای آنودایز:Fe،Cu،Mn

    محلولهای برنج:Fe

    محلولهای کادمیوم:Fe،Ti،Zn،Cu،Ni

    محلولهای کروم:Cr،Fe،Ni،Cu،Se

    محلولهای مس اسیدی:Cl،Fe

    محلول های مس قلیایی:Fe،Se

    محلولهای طلا:Au،Ni،In،Co،Cu،Fe،PO4

    محلولهای آهن:Mn،NH 3

    محلولهای سرب و قلع-سرب:pb

    محلولهای نیکل:Cr،Cu،Zn،Fe،Co،NH 3

    محلولهای پالادیوم:Pd،Cr،NH 3

    محلولهای پلاتین:Pt

    محلولهای رودیوم:Rh

    محلول های نقره:Ni،Cu،Sb

    محلول اسید قلع:Fe،Cu

    محلولهای قلیایی قلع:Cu،Pb،Zn

    محلول اسید روی:Cu،Fe

    محلول های قلیایی روی:Cu،Fe

    پساب:Cr+6،Ni،Cu،Fe،Zn،Pb،Al،B،NO 3،NO 2،PO 4،Cl،CN، عوامل مرطوب کننده.

    جذب اتمی

    فلزات در آبکاری و محلولهای مرتبط با آن می توانند به روش اسپکتروفتومتری جذب اتمی(AA) تعیین شوند. محدوده بهینه، حد تشخیص و حساسیت فلزات متناسب با ابزار های موجود متفاوت است.

    در آنالیز آسپیراسیون مستقم جذب اتمی[2] (CVAA) شامل کاهش شیمیایی جیوه یا سلنیوم توسط کلرید قلع کلرید و سپس آنالیز آن است. محلول کاهش یافته به شدت در ظرف واکنش همزده می­شود تا یک تعادل بین عنصر در فاز مایع و بخار بدست آید. سپس بخار به یک سلول جذب که در مسیر نور دستگاه اسپکتروفتومتر قرار داده شده است، تزریق می شود. پیک جذب حاصل در یک دستگاه ضبط نوار ثبت می شود.

    روشCVAA به مزاحمت برخی ترکیبات آلی، ترکیبات حاوی گوگرد و کلر بسیار حساس است. یونهای فلزی (به عنوان مثال، طلا، سلنیوم)، که با کلرید قلع به حالت عنصری کاهش می یابند، اگر با جیوه ترکیب شوند، تداخل ایجاد می کنند.

    جذب اتمی هیدرید[4](ISEs) انجام می شود. درواقعISE یک پتانسیل الکتریکی را در پاسخ به فعالیت یونی که برای الکترود خاص هستند ایجاد می کند. با استفاده از روشISE ها اندازه گیری کلسیم، مس، سرب، کادمیوم، آمونیاک، برومید، نیترات، سیانید، سولفات، کلرید، فلوراید و دیگر کاتیون ها و آنیون ها امکان پذیر می باشد. یکی از مشکلات مربوط بهISI های کاتیونها وISE های آنیونی مزاحمتهای ناشی از سایر کاتیونها و آنیونهای موجود در محلول می باشد. این مزاحمتها را می توان با تنظیمPH نمونه و یا شلاته کردن یون های مزاحم حذف کرد و یا به حداقل مقدار تقلیل داد. دستورالعملISE باید به دقت بررسی شود تا سطح حداکثر مجاز عوامل مزاحم، حد بالای غلظت یون خاص برایISE و نوع محیط سازگار باISE خاص تعیین شود. برخی از محلولهایی که می توانند با روش های پتانسیومتری آنالیز شوند عبارتند از:

    محلولهای آندایزینگ:Al،H2SO4،C2H2O4،CrO3،Cl

    محلولهای برنج:Cu،Zn،NH3،CO3

    محلولهای برنز:Cu،Sn،NaOH،NaCN،Na2CO3

    محلولهای کروم:Cr،Cl

    محلولهای کادمیوم:Cd،NaOH،NaCN،Na2CO3

    محلولهای مس اسیدی:Cl

    محلول های مس قلیایی:NaOH،NaCN،Na2CO3

    محلولهای طلا:Au،Ag،Ni،Cu

    محلولهای سرب و قلع / سرب:Pb،Sn،HBF4

    محلولهای نیکل:Co،Cu،Zn،Cd،Cl،H3BO3

    محلول های نقره:Ag،Sb،Ni

    محلولهای اسید قلع:Sn،HBF4،H2SO4

    محلول های قلیایی قلع:NaOH،Na2CO3،Cl

    محلولهای روی:Zn

    هدایت سنجی

    هدایت سنجی الکتریکی توانایی یک محلول برای حمل یک جریان الکتریکی را اندازه گیری می کند. جریان توسط اعمال یک پتانسیل مابین دو الکترود فلز نجیب(به عنوان مثال، پلاتین) است که در محلول مورد بررسی فرو برده شده اند. وقتی متغیرهای دیگر ثابت باقی می مانند، تغییرات در غلظت یک الکترولیت باعث تغییر در هدایت جریان الکتریکی توسط محلول می شود.

    در تیتراسیونهای هدایت سنجی، نقطه پایان تیتراسیون نمودار هدایت در مقابل حجم تیترانت حاصل می شود. مقادیر بیش از حد الکترولیت های فرعی و غیر مرتبط[6] (DME) شناخته می شود، اعمال می شود. سپس تغییرات در جریان اندازه گیری می شود. مساحت بزرگ آند جیوه مانع از  ایجاد هر نوع قطبشی می شود. سیستمDME شامل یک مخزن کوچک جیوه است که به یک لوله مویین شیشه ای متصل شده است و قطرات کوچک جیوه آن از طریق انتهای باز لوله به آرامی افت پایین می افتند. در این روش گاهی از یک الکترود کالومل اشباع شده بعنوان الکترود مرجع استفاده می شود. الکترولیت در سلول شامل یک محلول رقیق از گونه ای است که در محیط الکترولیت حمایت می شود. الکترولیت موجود در سل متشکل از محلول رقیق گونه هایی است که قرار است در محیط الکترولیت کمکی تعیین شوند. الکترولیت کمکی به منظور بالا بردن رسانایی محلول برای انتقال جریان عمل می کند. این تضمین می کند که اگر گونه مورد بررسی باردار شود، امکان مهاجرت بهDME را نخواهد داشت. وارد کردن گازهای بی اثری مانند نیتروژن یا هیدروژن به محلول قبل انجام پلاگرافی، باعث جلوگیری از انحلال اکسیژن در محلول می شود.

    یون های قابل احیا شدن به سمتDME منتشر می شوند. همانطور که ولتاژ اعمال شده افزایش می یابد، حرکت ناچیز جريان تا زمانی که پتانسیل به حد کافی برای تجزیه یون فلزی مورد بررسی برسد، ایجاد می شود. هنگامی که یون ها با همان سرعتی که به سمتDME انتشار می یابند کاهش می یابند، افزایشی در شدت جریان مشاهده نخواهد شد، زیرا جریان با سرعت انتشار محدود می شود. نیمه موج پتانسیل، پتانسیلی است که در آن جریان 50٪ از مقدار حداقل است.

    پلاروگرام ها با اندازه گیری جریان به عنوان تابعی از پتانسیل بکاربرده شده به دست می آیند. پتانسیل نیمه موج یک مشخصه از مواد خاص تحت شرایط مشخص است. جریان حد متناسب با غلظت ماده درحال کاهش است. در این روش موادی را می توان تحت آنالیز کمی و کیفی قرار داد که قادر به اکسیداسیون آندی یا کاهش کاتدی باشند. همانند سایر روش های دستگاهی، منظور اندازه گیری کمی نتایج باید به استانداردها ارجاع شود.

    مزایای روش های پلاروگرافی عبارتند از توانایی آنها برای تعیین اندازه گیری کیفی و کمی دو یا چند آنالیت در یک محلول مشابه. پلاروگرافی کاربرد گسترده ای برای گونه های معدنی، آلی، یونی یا مولکولی دارد. معایب پلاروگرافی شامل مزاحمتهای ناشی از غلظت های زیاد فلزات الکتروپوزیتو در تعیین غلظت های پایین فلزات الکترونگاتیو می باشد. از طرفی لوله مویین بسیار باریکDME گاهی اوقات مسدود می شود که خود باعث بروز مشکلاتی می شود.

    جدول 2: واکنشهایی که میتوان با آنالیز آمپرومتری انجام داد
    الکترولیت کمکی تیترانت آنالیت
    پتاسیوم کلرید نیترات سرب فلورید
    سولفوریک اسید هیدروکوئینون طلا
    کلراید دی متیل گلی اکسیم نیکل
    کلراید سدیم فلورید سرب
    نیتریک اسید نیترات نقره برمید
    آمونیاک EDTA کلسیم
    آمونیاک EDTA کادمیوم
    نیریک اسید نیترات نقره کلرید
    اسید ضعیف EDTA ایندیوم

    امروزه از روش پلاروگرافی برای محلول های زیر استفاده می شود:

    محلولهای آنودایز:Cu،Zn،Mn

    محلولهای برنجی:Pb،Cd،Cu،Ni،Zn

    محلولهای برنز:Pb،Zn،Al،Cu،Ni

    محلولهای کادمیوم:Cu،Pb،Zn،Ni

    محلولهای کروم:Cu،Ni،Zn،Cl،SO 4

    محلولهای مس اسیدی:Cu،Cl

    محلول های مس قلیایی:Zn،Fe،Pb،Cu

    محلولهای طلا:Au،Cu،Ni،Zn،In،Co،Cd

    راه حل های آهن:Mn

    محلولهای سرب و قلع-سرب:Cu،Cd،Ni،Zn،Sb

    محلولهای نیکل:Cu،Pb،Zn،Cd،Na،Co،Cr،Mn

    محلولهای پالادیم:Pd،Cr 3+،Cr 6+

    محلولهای رودی:Rh

    محلول های نقره:Sb،Cu،Cd

    محلول اسیدی سرب:Sn 4+،Cu،Ni،Zn

    محلولهای قلیایی سرب:Pb،Cd،Zn،Cu

    م محلولهای روی اسیدی:Cu،Fe،Pb،Cd

    محلول های روی قلیایی:Pb،Cd،Cu

    پساب های:Cd ،Cu،Cr 3+،Ni،Sn،Zn

    آمپرومتری

    تیتراسیونهای آمپرومتری شامل استفاده از پلاروگرافی بعنوان مبنای تیتراسیون الکترومتری است.ولتاژ اعمال شده مابین الکترود شاخص (به عنوان مثال،DME یا پلاتین) و الکترود مرجع (به عنوان مثال کالومل یا جیوه) ثابت نگه داشته می شود و جریان عبوری از سل به عنوان یک تابعی از حجم تیترانت اضافه شده اندازه گیری می شود. نقطه پایانی تیتراسیون از تقاطع دو خط مستقیم در یک نمودار جریان در مقابل حجم تیترانت اضافه شده تعیین می شود.

    پلاروگرام برای تعیین بهینه ولتاژ تیتراسیون انجام می شود. تیتراسیونهای آمپرمترتری را می توان در غلظت های کم آنالیت که روش های حجمی یا پتانسیومتری نمی توانند نتایج دقیق ارائه دهند، انجام داد. آمپرومتری یک روش مستقل از دما است و دقیق تر از سایر روش های پلاروگرافی است. اگرچه آمپرومتری برای واکنش های اکسایش-کاهش یا واکنشهای ترسیبی مناسب است، اما تعداد کمی از واکنش های برپایه واکنشهای اسید-باز با این روش تعیین می شوند. برخی از واکنش هایی که می توانند با استفاده از روش های آمپر سنجی مورد آنالیز قرار گیرند، در جدول 2 آمده است.

    الکتروگراویمتری

    در الکتروگراویمتری، ماده ای که باید مشخص شود، در یک پتانسیل ثابت بر روی یک کاتد بی اثر که از قبل وزن شده است جدا می شود، که بعد از آن شسته شدن، خشک شدن مجددا کاتد وزن می شود و نهایتا وزن رسوب محاسبه میگردد. موارد مورد نیاز برا یک آنالیز دقیق الکتروگرامتری شامل همزدن خوب محلول، چسبندگی یکنواخت رسوبات وPH، دما و دانسیته جریان مناسب است.

    جدول 3: مولاریته و نرمالیته محلول های استاندارد
    مولاریته نرمالیته فرمول محلول استاندارد
    0.1 0.2 C10H14O8N2Na2.2H2O EDTA
    0.1 0.1 FeSO4(NH4)2SO4.6H2O سولفات آمونیوم آهن
    1.0 1.0 HCl هیدروکلریک اسید
    0.1 0.1 I2 ید
    0.02 0.1 K2Cr2O7 پتاسیوم دی کرومات
    0.0167 0.1 KI-KIO3 پتاسیوم یدید-یدات
    0.02 0.1 KMnO4 پتاسیوم پرمنگنات
    0.1 0.1 KSCN پتاسیوم تیو سیانات
    0.1 0.1 AgNO3 نیترات نقره
    1.0 1.0 NaOH سدیم هیدروکساید
    0.1 0.1 Na2S2O3.5H20 سدیم تیوسولفات

    مزایای استفاده از الکتروگراویمتری شامل توانایی آن در حذف فلزات معمولی از محلول می باشد. این روش نیاز به نظارت مستمر ندارد. معایب این روش عبارتند از زمان الکترولیز طولانی.

    بعضی از فلزات که با روش الکتروگراویمتری آنالیز شده و می شوند عبارتند از: کادمیوم، کبالت، مس، طلا، آهن، سرب، نیکل، رودیوم، نقره، قلع و روی.

     

    در کانال تخصصی آبکاری خانه آبکار مقالات واحد تحقیق و  توسعه شرکت جلاپردازانرا دنبال کنید


    [2] -Cold vapor atomic absorption(CVAA)

    [4]selective electrodes (ISEs)

    [6]dropping mercury electrode (DME)

  • جدول مقاومت شیمیایی مخازن در برابر محلولهای آبکاری

    جدول مقاومت شیمیایی مخازن در برابر محلولهای آبکاری

     

    به منظور طراحی خطوط آبکاری نیاز است مخزن مناسبی برای نگهداری محلولها استفاده شود تا ضمن افزایش  طول عمر و کاهش هزینه های نگهداری از اطلاعات زیر مطلع باشی

     

    جدول1 مقاومت شیمیایی مواد

    A: عالی B          :خوب             C: ضعیف          D : توصیه نشده

    نئوپرن پلی  پروپیلنpp تفلون PE PVC    نوع1 تیتانیوم Ti

    استیل

    316

    استیل304                           

     جنس مخزن یا لاینینگ مخزن 

     

     

       محلول شیمیایی داخل وان

    A A A A D C A آمونیوم کلرید
    A A A A A A A بوریک اسید
    D A - A A A A کرومیک اسید(5%)
    D A A A A - B کرومیک اسید(10%)
    D A A A A - B کرومیک اسید(30%)
    D B A B A B B کرومیک اسید(50%)
    A A A A A A A سیانید مس
    A A A A A A A سولفات مس(5%)
    A A A A A - B سولفات مس (100%)
    C - - - - A A رنگینه
    C A A A C D D اسیدکلریدریک(20%)
    C A A A C D D اسیدکلریدریک(37%)
    C - A A D D D اسیدکلریدریک(100%)
    D B A A B B B هیدروژن پراکسید (30%)
    D A - - - A A جلا دهنده ها
    A A A A A B A نیکل کلرید
    A A A A A B A نیکل سولفات
    D A A A A A A اسید نیتریک(محلول10%)
    D A A A A A A اسید نیتریک(محلول20%)
    D D A A A A A اسید نیتریک(محلول50%)
    D D A D A B D اسید نیتریک(تغلیظ شده)
    D A A A A A B اسید فسفریک اسید (تا 40%)
    D A A A B B C اسید فسفریک (از 40 تا 100درصد)
    A A A A A A - حمام برنج(40°C)
    A A A A A A - حمام کادمیوم(30°C)
    D A A A A C - حمام کروم مرسوم
    D A A A C C - حمام کروم(فلوروسیلیکات-35°C)
    D A A A C D - حمام کروم(فلورید-55°C)
    A - A - A - - مس قلیایی (50°Cاستریک)
    B A A D A A - مس قلیایی(راشل-65°C)
    B A A D A A - مس قلیایی (بازه ی بالای80°C)
    A A A A A D - مس اسیدی(سولفات-28°C)

    جدول2 مقاومت شیمیایی مواد

    A: عالی         B:خوب           C: ضعیف     D: توصیه نشده

     

    نئوپرن پلی  پروپیلنpp تفلون PE PVC    نوع1 تیتانیوم Ti استیل316

    جنس مخزن

    استیل304

     

       محلول شیمیایی داخل وان

    D A A A - - - مس بدون الکتریسیته
    A A A D A C - نیکل
    B A A D A C - نیکل(چوب- کلرید بالا)
    C A A D D C - نیکل(فلوروبورات)
    A A A A A C - نیکل (سولفانات)
    D D A D - - - نیکل بدون الکتریسیته
    A A A A A D - روی اسیدی
    B A A D A C - روی اسیدی؟
    A A A A A - - روی قلیایی
    A A A A C B B پتاسیم هیدروکسید
    C A - - - - A بازدارنده خوردگی
    A A A A A - A سدیم بی سولفات
    A A A A A - A سدیم سیانید
    A - A C - - - سدیم هیدروسولفیت
    B A A A A A A سدیم هیدروکسید 20%
    C A A A A B A سدیم هیدروکسید50%
    C A A A A D A سدیم هیدروکسید80%
    D D A A A C C سدیم هیپوکلریت تا 20%
    A A A A A A - سدیم هیپوکلریت
    D A A A A C D سولفوریک اسید   تا 10%
    D A A A C D D سولفوریک اسید 10تا75%
    D B A B D D - سولفوریک اسید 75 تا 100%
    B A A A - A A آب مقطر
    B A A A - A A آب آشامیدنی
    A A A A A B D کلرید روی
    A A A C A A A سولفات روی
    A              Antimony Plating 130°F
    A              Arsenic Plating 110°F
    A             Brass Plating:    High-Speed Brass Bath 110°F
    A             Brass Plating:    Regular Brass Bath 100°F
    A             Bronz Plating:   Cu-Cd  Bronze Bath R.T.
    A             Bronz Plating :  Cu-Cd  Bronze Bath 160°F
    A             Bronz Plating:   Cu-Cd  Bronze Bath 100°F
    A             Cadmium Plating:   Cyanide Bath 90°F
    A             Cadmium Plating:   Cyanide Bath 90°F
    C             Cadmium Plating:   Flouborate Bath 100°F
    D             Chromium Plating:   Barrel Chrome Bath 95°F
    D             Chromium Plating:   Barrel Chrome Bath 115°F
    D             Chromium Plating:   Chromic-Slruric Bath 130°F
    D             Chromium Plating:   Fluoride Bath 130°F
    D             Chromium Plating:   Fluoride Bath 95°F
    C             Copper Plating(Acid):Copper Fluoborate Bath 120°F
    A             Copper Plating (Acid):Copper Sulfate Bath R.T.
    A             Copper Plating(Cyanide):Copper Strike Bath 120°F
    B             Copper Plating(Cyanide):High-Speed Bath 180°F
    B             Copper Plating(Cyanide):Rochelle Salt Bath 150°F
    D             Copper Plating(Misc):      Copper (Electroless)
    A             Copper Plating(Misc):      Copper Pyrophosphate
    A             Gold Plating:       Acid 75°F
    A             Gold Plating:       Cyanide 150°F
    A             Gold Plating:       Neutral 75°F
    A             Indium Sulfamate Plating R.T.
    B             Iron Plating:        Ferrous Am Sulfate Bath 150°F
    D             Iron Plating:        Ferrous Chloride Bath 190°F
    B             Iron Plating:        Ferrous Sulfate Bath 150°F
    C             Iron Plating:        Fluoborate Bath 145°F
    A             Iron Plating:        Sulfamate 140°F
    C             Iron Plating:        Sulfate-Chloride Bath 160°F
    A             Lead Fluoborate Plating
    D             Nickel Plating:       Electroless 200°F
    A             Nickel Plating:       Fluoborate 100-170°F
    B             Nickel Plating:       High-Chloride 130-160°F
    A             Nickel Plating:       Sulfamate 100-140°F
    A             Nickel Plating:       Watts Type 115-160°F
    B             Rhodium Plating 120°F
    A             Silver Plating 80-120°F
    C             Tin-Fluoborate Plating 100°F
    C             Tin-Lead Plating 100°F
    A             Zinc Plating:      Acid Chloride 140°F
    C             Zinc Plating:      Acid Fluoborate Bath R.T.
    B             Zinc Plating:      Acid Sulfate Bath 150°F
    A             Zinc Plating:      Alkaline Cyanide Bath R.T.

     

  • فیلترکردن و خالص سازی محلولهای آبکاری - English

    environmental controls

    FILTRATION AND PURIFICATION OF

    PLATING AND RELATED SOLUTIONS AND EFFLUENTS

    BY JACK H. BERG

    SERFILCO LTD., NORTHBROOK, ILL.; WWW.SERFILCO.COM

    This introduction reflects the response needed by platers for quality control, tomeet just-in-time deliveries, and to achieve zero rejects. It also addresses the needfor platers to continue to reduce solid waste after neutralization and employfiltration wherever possible to recycle or lengthen the service life of cleaners,etchants, and rinses.Filtration usually includes the use of carbon for undesirable organic impurityremoval, which years ago also doubled as a filter media along with other formsof filter aids.Today’s acceptance of granular carbon in many situations has lessened theneed for powdered carbon and almost eliminated the weekly or monthly batchpurification treatment. There are, however, some occasions when powdered carbonmay be the only answer, and for that reason a separate piece of equipmentheld aside for such a need should be considered.Platers who appreciate the value of filtration must first understand that it isnot as much an art as it is a science. The requirement of a science is to have anorderly body of facts, facts that can be correlated and anticipated results yielded.Although there has been some work done in this area over the last 5-10 years,platers must still rely on experience to a great extent.In the past, it has been suggested that the plater decide the level of qualitysought and, using statistical quality control, determine if this goal has beenachieved. It is further recommended that the plater needs to know the partsper million of contamination (solids) so that the necessary size or dirt-holding(solids) capacity of the filter could be established. The plater must also knowthe nature of the solids, which would be critical to success. Slimy, stringy, or oilycontaminants blind a dense filter media surface quickly, whereas coarse, grainy,sandlike particles build a thick cake and still allow solution to pass, which providesfor continued solid/liquid separation.By first assessing these factors, platers can ascertain what results can beachieved. For example, slimy solids would require more surface area, whereasgritty particles could get by with less area (i.e., less solids-holding capacity).However, all filter media are not manufactured in the same manner, forinstance, filter paper, cloth, and plastic membranes provide a single junction tostop solids. Filter aids can enhance the ability of the filter media by creating aporous cake, which improves surface flow, but to really be successful a continuousmixing of filter aid and solids must be coordinated to maintain suitable porosity.Other types of filter media canprovide the necessary junction to stop solidsbut are built in such a manner as to achieve results from a combination ofsurfaces or juncture points, which achieve the solids retention by impedance.Thus, it is possible for continuous solid/liquid separation to be maintained overa longer period of time.Most filter media are rated according to the size of particles that they arecapable of stopping. Such a rating is based on laboratory tests and expressed inmicrometers. A coarse media would be 100μm; a dense media would be 10, 5, or1μm. The number suggests that at an efficiency level of 85 to 99%, all such particleswould be stopped, whereas if the micrometer retention level is expressed in“absolute” ratings, 100% of the stated micrometer size and larger sizes would beremoved. It further stands to reason that the coarser media will offer more solidsholdingcapacity, and the denser media will offer less solids-holding capacity.Next we discuss where these troublesome solids come from and how they canbe most effectively removed.

    DIRT LOAD

    The “dirt” (impurities) in a working plating bath can come from drag-in, anodes,water, and airborne sources. For their efficient removal, the system must bedesigned for the amount and type of contaminants present in the plating tank;these vary for each installation. Even without prior operating experience, anestimate of the dirt load can be made by reviewing the cleaning and platingprocesses to select and size the equipment needed.A filter with insufficient dirt-holding capacity will require frequent cleaningor servicing. The rapid pressurebuildup in the system as solids are retainedincreases the stress and wear of pump seals. By minimizing the dirt load, maintenanceof the filter and pump can be reduced considerably. Even after thoroughcleaning and rinsing, some solids and contaminants cling to parts, racks, andbarrels. Thus, they are dragged into the plating solution. The amount of drag-incontamination depends primarily on the type of parts, plating method (rack orbarrel), cleaning efficiency and rinsing cycles.In most plating plants, the type and amount of parts being processed mayvary considerably. For trouble-free operation, the filtration system should bedesigned for the heaviest work load and most difficult-to-clean parts. Drag-incontamination with barrels is high, due to incomplete draining of cleaners anddifficulty in rinsing of loads. Filtration and purification on automatic barrellines must be continuous, and equipment must be of sufficient size to minimizeservicing and work interruption.The amount of drag-in can often be reduced by improving the pretreatment.With the conversion of many vapor degreasing processes to aqueouscleaning, proper maintenance of cleaners and electrocleaners is of greaterimportance, particularly with machined or buffed parts carrying oil and lubricants.Recirculation and coalescing with an overflow weir on cleaner tanks willeffectively skim off oil and scum, which would quickly foul the filter mediumand carbon. More effective descaling will minimize the dirt load. Several countercurrentrinse tanks and a final spray rinse with clean water will also reducethe drag-in contamination. Due to the nature of the cleaning process, contaminationof the solution with organic soil (oil, wetting agents) and/or inorganic(metallic) compounds is sometimes unavoidable. These can generally be controlledby carbon treatment at the rinse tank before plating.Filterability depends on the nature, amount, and size of suspended particles,which, in turn, are contingent upon the type and chemistry of the plating solution.Generally, alkaline solutions, such as cyanide baths, have slimy or flocculentdifficult-to-filter insolubles, whereas most acid baths contain more grittysolids, which are relatively easy to filter even with a dense filter media. A quicktest of a representative sample with filter paper in a funnel will determine thenature and amount of solids present. This test will also indicate the most suitablefilter medium. Bagging of soluble anodes will materially reduce the amountof sludge entering the plating bath. Airborne dirt from ceiling blowers, motorfans, hoists, or nearby polishing or buffing operations may fall into the platingtank and cause defective plating. Good housekeeping and maintenance will, ofcourse, reduce dirt load and contamination of the plating solution.Prevention of deposit roughness is perhaps the foremost reason for filteringplating solutions. Better covering power with less chance of burning isalso achieved with a clean bath. In addition to suspended solids, the plateralso has to contend with organic and inorganic (metallic) impurities, whichare introduced into the solution primarily by drag-in. If this contamination isallowed to build up, it will affect deposit appearance. Continuous or periodicpurification of the solution with activated carbon and/or low-current-densityelectrolysis (dummying) will often remove these impurities before a shutdownof the plating line becomes necessary.The trend of Environmental Protection Agency (EPA) regulations is toseverely restrict the amount of suspended solids and dissolved metal impuritiesin wastewater discharged to sewers and streams. To comply, platingplants have had to resort to some chemical treatment of their effluents toprecipitate the metals as hydroxides. The filtration of these hydrated sludgesis difficult and requires special separation equipment. Closed-loop systems,recycling, and recovery are being employed and require greater attention tofiltration and purification.Most filtration systems consist of a filter chamber containing the filter mediaand a motor-driven pump to transfer or circulate the solution from the platingtank through the filter. The many filters and pumps on the market today makeit possible to select and justify a cost-effective filter system for each and everysolution, regardless of volume.When engineering a filter system for a plating installation, it is necessaryto first establish the main objectives, such as: high quality finish—maximumsmoothness and brightness; optimum physical properties—grain size, corrosion,

    and wear resistance; or maximum process efficiency and control—coveringpower, plating rate, purification, and clarification.Then the following factors must be considered before selecting the size andmaterials needed for the filter media, chamber, pump, and motor:

    1. Dirt load—suspended solids, size, kind, and amount; also soluble organicand inorganic impurities.

    2. Flow rate—turnovers per hour for a given volume of solution necessaryto maintain clarity.

    3. Frequency of filtration and purification—batch, intermittent, or continuousrequired to remove dirt and contamination and filter servicinginterval desired.When agitating solutions with air, a low-pressure blower is usually employed.This makes it virtually impossible to achieve good filtration of the air while keepingthe solution clean, because the plating solution then acts like a fume scrubber.If effluent regulations make it necessary to remove or reduce total suspendedsolids (TSS) from wastewater, the amount discharged per hour or shift can bereadily determined. For instance, a 100 gal/min (gpm) effluent containing 100ppm TSS (100 mg/L) will generate 5 lb of solids per hour, as calculated below:100 gpm 3.79 L/gal 100 mg/L 60 min/hr (1000 mg/g 454 g/lb) = 5 lb/hr (2.3 kg/hr)Therefore, the filter must have sufficient capacity to hold approximately40 lb of solids/8 hr of operation. A horizontal gravity filter would be the mostcost efficient for this dirt load and would operate automatically; however, ifdryness of the retained solids is to be achieved, then a filter press would berecommended.Filtration and/or purification during nonproductive hours makes it possibleto remove dirt at a time when no additional contaminants are being introducedinto the tank, such as insolubles from anodes, chemical additions, plus thatwhich would otherwise be dragged in from improper cleaning of the work.Again, individual tank operating characteristics and economics will determinethe ultimate level of acceptable quality.This brings up an important consideration. Contamination by organic compounds,inorganic salts, wetting agents, and oils is not removed by filtration,but by adsorption on activated carbon. Some plating solutions, such as brightnickel baths, generate organic byproducts during plating. It cannot be assumedthat both types of contamination increase at the same rate. A batch treatment,therefore, may eventually become necessary, either because of insoluble or solubleimpurities. A check of clarity, flow rate, and work appearance and a Hullcell test will indicate the need for transfer filtration and/or carbon treatment.If analysis shows that the concentration of insolubles (in ppm) has increased,it would indicate that the solution is not being adequately filtered. Therefore,transfer pumping of the solution through the filter should be employed as thequickest way of getting all the solids out at once and returning the clean solutionto the plating tank. Soluble impurities can be detected by inspection of thework on a Hull cell panel. Pitting, poor adhesion, or spotty appearance indicatesthe need for fresh carbon. Here again, it may be desirable to completely batchtreat the solution to restore it to good plating quality; however, since this necessitatesshutting down the plating line and requires considerable labor, everyeffort should be made to maintain solution clarity and purity continuously,without having to resort to such batch treatment.

    FREQUENCY OF FILTRATION AND PURIFICATION

    Since it is desirable to plate with a solution as free of suspended solids as possible,the quickest way to achieve clarification is by transfer pumping all of thesolution from one tank, through a filter, to another tank (batch treatment); however,to maintain both clarity and uniform deposit quality, continuous recirculationthrough a filter is most effective. Although continuous filtration is moredesirable, there are some plating installations that require only intermittentfiltration, because relatively small amounts of solids are present. In other cases,it is necessary to filter and purify the bath continuously, even when not plating.A high flow rate is essential to bring the particles to the filter as quicklyas possible and to prevent settling of dirt on parts being plated. Althoughplating in a solution completely free of solids would be best, this ideal can beapproached only in the laboratory. Some contamination always exists, and mustbe accepted. Continuous filtrationat a high flow rate can maintain a high levelof product quality by keeping suspended solids to a minimum. As Figure 1 indicates,four to five complete tank turnovers effectively remove 97% of all filterablematerials if no additional solids are introduced. Since, in many installations, therate at which contamination is introduced is higher than the rate at which it isremoved, the impurities and solids gradually increase with time unless filtrationis continued even during nonplating periods. The greater the turnover rate, the longer the plating bath can be operated

    ؟؟؟

    Fig. 3. Typical flow versus pressure curve. Q represents the maximum open pumping against no

    restriction, whereas P represents the pressure that the pump can develop at zero flow. A might

    indicate the pressure drop across a depth type media or a bare support membrane, whereas points B

    and C indicate the reduction in flow caused by the addition of filter aid and carbon, respectively.

    before the reject rate becomes too high and batch (transfer) filtration is necessary.In practice, contaminants are not introduced at a steady rate; for instance,most are introduced with the parts to be plated and, therefore, at the momentof immersion the degree of contamination is sharply increased until it is againreduced by the action of the filters. It then increases again when more parts areput into the tank for plating.Figure 2 indicates the reduction in flow caused by the dirt buildup in thefilter on a day-to-day basis, where one week’s filtration would be effectedbefore service of the filter becomes necessary. This reduction in flow ratecould also have been representative of a longer time interval between filtercleanings. Graphically, it indicates why platers may experience roughness atvarying intervals in the plating filtration cycle. The amount of solids increasesin the tank as the flow rate decreases to a level that may cause rejects. After thefilter is serviced, the increased flow rate agitates any settled solids. Therefore,it is advisable to delay plating of parts until the contaminant level is againreduced by filtration to within tolerable limits. This phenomenon generallyoccurs in a still tank, since the dirt has more chance to settle. For this reason,when the solution is pumped into a treatment tank, sludge may be found onthe bottom of the plating tank.Dirt in an air-agitated tank can settle any time after the air is shut off. Ifcarbon and/or a filter aid is used in the filter during the continuous filtrationcycle, it should be borne in mind that, as these solids are collected on the media,the pressure increases appreciably, reducing the initial flow rate by almost 25%and the overall volume pumped through the filter by as much as 50% beforeservicing isnecessary (Fig. 3). Frequent laboratory checks will verify the amountof insolubles in the plating tank, which will tell whether a uniform degree ofclarity is being maintained or whether it is increasing slowly toward the rejectlevel. More frequent servicing of the existing filtration equipment will increasethe total volume pumped and, in turn, maintain the lowest possible level ofcontamination and minimize the need for batch treatment.It is, therefore, necessary for the plater to determine the particle size to be removed and then select themedia that provides the most solids-holdingcapacity. Then, knowing the efficiency of the media, multiply it by flow rateso that all of the solution passes through the filter in a certain period oftime, such as 1 hr or 1 min. Note the small amount of solution that is filteredin 5 min if a rate of one turnover per hour is used (Fig. 4) as compared withthe amount that would pass through at a rate of ten turnovers per hour(assume a 100-gallon solution):At one turnover per hour,At ten turnovers per hour,The point here is that if nearly the entire solutionis turned over every 5 min,then the plating bath will exhibit a high degree of clarity and purity. The netresult should be fewer rejects caused by occlusion of particulate matter in thedeposit.In modern electroplating, no area that can result in improved quality shouldbe overlooked. The plater can use the principles of high tank turnover and solutionvelocity to his advantage in his quest for zero rejects.During recent years the flow rate through the filter, or tank turnover as it isreferred to, has increased to two or three per hour or higher for most platingsolutions (see Table I). This means that 1,000 gallons require a flow rate of atleast 2,000 to 3,000 gallons per hour (7.6-11.5 m3/hr); however, platers shouldrecognize the need and employ turnovers of 10 or even 20 times per hour whenall solids must be removed (see Fig. 1).Alkaline solutions may require even higher flow rates for more effective solidsremoval by recirculation. Depending on the filter medium and its retentionefficiency, flow rates in the range of 0.5 to 2 gpm (2 to 8 Lpm) per square footof filter surface area are obtainable. Although 5 gpm per 10-in. (25-cm) cartridgeis permissible, flow rates under 1.5 gpm per cartridge offer better economy. Infact, at a given flow rate with a cartridge filter, servicing, cartridge cleaning, orreplacement can be reduced significantly by increasing the size of the filter.For example,if the size of the filter was multiplied by four the annual amount of filtercartridges consumed would be cut in half and the filter itself would operate unattended forat least four times as long before cartridge cleaning or replacement was necessary. This isan important consideration to reduce media consumption. It has also been found that the effective life of surface filters may often betripled by doubling the surface. By increasing the dirt-holding capacity andreducing the frequency of filter servicing and replacement, the cost of filtrationon a per month or per year basis is substantially reduced.

    TYPES OF FILTER SYSTEMS

    After estimating the dirt load and determining the flow rate and filtration frequencyrequired, a choice of filter method and medium must now be made. Themost common types of filters used in the plating industry are discussed below.These filters may be placed inside or outside the tank.In-Tank Considerations:Tank spaceMotors located over fumesLimited size of filter (less service life of media if used on pump suction)Out-of-Tank Considerations:Remote possibility for easy serviceEmploy sealless magnetically coupled pumps or direct-drive with singleor double water-flushed sealMore suitable for use with slurry tank for chemical or filter aid/carbonaddition or backwashingLarger dirt holding and flow capacity from cartridges or surface media

    Cartridge Filters

    Cartridges offer both surface and depth-type filtration characteristics, providingvarious levels of particle retention at different efficiencies (nominal andabsolute), manufactured in natural and synthetic (plastic) materials to providea wide range of chemical resistance, flow rates, and particle retention capacities.Pleated-surface media offer initially higher flow rates, are available with a choiceof porosities (usually in the denser range), and are sometimes given an absoluteparticle-retention rating.Depth-type media are available in 1- to 100-μm particle retention and, becauseof the variety of porosities available, they are sometimes best suited to handlehigh-dirt-load conditions. This is a result of the manner in which the depth-typecartridge filter is manufactured. Basically, it consists of a series of layers, whichare formed by winding a twisted yarn around a core to form a diamond opening.The fibers, which are stretched across the diamond opening, become thefilter media. Succeeding layers lock the previously brushed fibers in place and,. since there is the same number of diamond openings on each layer, the openingsbecome larger due to the increase in circumference; other fiber-bonded types alsoincrease density across the depth of the media.During filtration, the larger particles are retained on the outer layers of thecartridge where the openings are large, whereas the smaller particles are retainedselectively by the smaller openings on succeeding inner layers. This, then, makesit possible for an individual cartridge to have a dirt-holding capacity equal to 3.5ft2of surface filter area of the same density. Cartridges having a 15- to 30-μmretention will often hold 6 to 8 oz of dry solids before replacement is necessary,whereas cartridges of 10μm downto 1μm will have a dirt-holding capacity ofperhaps 3 oz to less than 0.5 oz. These figures merely indicate that the coarsercartridges have greater dirt-holding capacity, are more economical to use, andcan be used longer before replacement.Also, as pointed out earlier, dirt loads vary from tank to tank, and cartridgesshould be selected according to the individual requirements. A dense cartridgehaving less dirt-holding capacity will load up more quickly, increasing the pressuredifferential and, therefore, reducing the flow (Fig. 5). Using coarser cartridges(greater than 30μm on zinc, for example) that have greater dirt-holdingcapacity and a longer service life may make it possible to clarify the plating tankmore quickly because of the high obtainable flow rate. This will be accomplishedat less cost. Usually two cartridges (three on zinc, tin, and cadmium) are recommendedfor each 100 gal of tank capacity.The pump should provide a pumping rate of at least 100 gph (two tankturnovers per hour) for each cartridge. Usually, a cartridge life of 6 weeks onnickel or 4 weeks on zinc can be expected, with some tanks running as longas 12 weeks; however, much depends upon dirt load, hours of plating, and soon. With cartridges, a higher dirt load can be retained in the filter chamberbecause of the coarseness of the filter media. Higher flow rates can usually beemployed during the entire lifespan of the cartridge. This is due, in part, to thehigher head pressures of pumps employed without chancing the rupture of acartridge. Since all of the dirt is retained on and in the cartridge, the cartridgefilter can be turned off and on at will, unless the cartridges are precoated.Cartridges are changed with very little maintenance expense and no solutionloss; however, simplicity of use is perhaps the most predominant single factorin their selection.

    Precoat Filters

    Precoated filters consist of a membrane (leaf, sleeve, or screen) such as paper,cloth, ceramic, sintered metal, wire mesh, or wound cartridges. These membranessupport the diatomite or fibrous-type filter aid, which has been mixed ina slurry of water or plating solution and picked up by the membrane openings.The dirt is retained on the outer surface of the cake. When the pressure hasincreased and the flow rate has decreased to a point where filtration is no longerefficient, the dirt and cake are washed from the membrane. Paper membranesare discarded and replaced.The ability to obtain long runs is dependent upon proper selection of thefoundation media, coupled with a coarser-than-usual nonfibrous-type filteraid (to be used where possible). Periodic (daily, if necessary) additions of smallquantities of filter aid should be made to lengthen the cycle between servicing.The dirt-holding capacity of this type of filter is usually measured in squarefeet of filter surface. (If the standard 2.5 x 10-in. long cartridge is used, its outersurface when precoated would beequivalent to about 0.50 to 0.67 ft2of area.)Flow rate and dirt-holding capacity of the various precoated membranes orcartridges would be about equal.Before precoating, the operator should know or determine the filtrationarea to be covered. The amount of filter aid used depends on its type and onthe solution being filtered. Generally, 0.5 to 2 oz/ft2of filter is sufficient. Themanufacturer’s recommendations for type and amount of filter aid should befollowed if optimum results are to be obtained. A slurry of filter aid and platingsolution or water is mixed in a separate container or in a slurry tank, which maybe an integral part of the filtration system. The slurry is then caused to flowthrough the filter media and create a filter cake.Usual flow rates range from 0.5 to 2 gpm/ft2of filter surface. A lower flowrate improves particle retention and smaller particles will be removed. It shouldbe pointed out that, although there may be a wide range in flow rate, the rangeof selectivity of particles being removed is between 0.5 and 5μm, which is themost significant difference between precoat and depth-type cartridges and offersa wider choice of porosity.Buildup of cake should be gradual, and recirculation should continue untilthe solution runs clear. Cake should be dispersed uniformly across the mediabefore the plating solution is allowed to flow across the filter. A slurry tankpiped and valved into the filtration system becomes a convenient and versatilepiece of equipment. The slurry may be prepared with plating solution, ratherthan water, to avoid diluting critical mixtures. Via valving, the solution isdrawn into the slurry tank for sampling, preparation of slurry, and chemicaladditions. Similarly, the solution is returned to the plating tank. This methodeliminates the necessity of transfer hoses between tanks, and the subsequentrisk of loosening the cake or losing pump prime. The integral slurry tank isalso a convenient storage for backwash water.

     Precoat Backwash FiltersThese filters operate the same as, and have the same functional purpose as, ordinaryfilters with the further advantage that they can be cleaned quickly by reversingthe flow through the filter media. Backwashing the filter aid and dirt awaymakes the media available for prompt repeat precoating. The basic advantage isthat the filter chamber need not be opened each time the filter requires cleaning.Finer grades of filter aid may be precoated on top of the coarse filter aid whenfine powdered carbon is to be used continuously. Here again, periodic (daily, ifnecessary) additions of small quantities of filter aid should be made to lengthenthe cycle between backwashing. The media may be cleaned automatically withsluicing or using other devices. Iron hydroxide sludges can be dissolved by circulatingdilute hydrochloric acid from the slurry tank; additional manual cleaningmay also be required occasionally.Some disadvantages of precoat and backwashing are the possible loss of solution,increased waste treatment loading, and the possibility of migration of filteraid and carbon into the plating tank. The use of rinse water for backflushing willreduce waste treatment loading; however, if evaporation is used to control dragout,this may interfere with evaporator operation and the economies achievedby using this equipment.

    Sand Filters

    Using sand as the filter media, the pump and filter operate like a precoat surfacefilter and backwash like a precoat without the need of additional aid to achievefine particle retention. Performance can be acceptable based on recirculationturnover rates, with the basic disadvantage coming from a smaller surface area,which increases the need for frequent backwashing and resulting solution lossto maintain the desired flow rate (turnover required).

    Horizontal Fabric and Screen Filters

    These filters are especially well suited for the continuous dewatering of hydratedmetal sludges resulting from the neutralization of plating wastewater prior to

    ؟؟؟

    Fig. 7. Skimmer, pump, and prefilter with carbon or free oil separator.

    sewer discharge. They are also effective in removing accumulated iron sludgefrom phosphating tanks.In one such system (Fig. 6), the waste containing 1 to 3% solids is first allowedto settle in a cone-shaped tank. The supernatant liquid drains into a head box,which directs the flow across the filter medium (paper or plastic) supported bya motor-driven conveyor belt. The liquid passes through the disposable fabricby gravity flow into a receiving tank below. When the pores of the media becomeclogged, the liquid level rises and a float switch activates the belt drive. Freshmedia is fed over the tank and filtration is continuous. The cake on the fabricis allowed to drain before it is dumped into the sludge box. Gravity drain or animmersion pump empties the filtered water from the tank. Cycling and indexingof the filter are automatic. The occasional replacement of the filter fabric rollis the only labor required. The sediment in the bottom of the cone can also bedewatered periodically by filtration on the fabric. Other systems feature pressureor vacuum filtration. The sludge cake contains from 5 to 35% solids, dependingupon the equipment and type of cake. Cakes can be further treated by airevaporation or with heat for dry disposal. The filtrate can be discharged to thesewer if it meets local effluent regulations or can be recycled through the system.The performance of the unit can be improved greatly by the addition ofcoagulants and flocculating agents, such as polyelectrolytes, which increase theamount of solids, particle size, and settling rate. The flow rate is approximately1 gpm/ft2with 90 to 95% solids retention; with coarse filter media, flow ratesincrease up to 10 gpm/ft2. Filter aid can also be precoated to improve retention.The filter media is available in porosities of 1 to 125μm and rolls 500 yd long.Carbon-impregnated paper is used for purification and removal of organiccontaminants. The unit must be sized properly for each application to operateefficiently and with a minimum media cost. Steel, coated, stainless steel, orplastic units are available for corrosive solutions.

    BATCH AND CONTINUOUS ACTIVATED-CARBON PURIFICATION

    Virtually all plating solutions and some cleaners or rinses at some time will requirepurification via the adsorption of impurities on activated carbon. Those solutionsthat contain wetting agents require the most carbon; when oil is introduced intothe bath, the carbon is dispersed throughout the solution and clings to the parts,causing peeling or spotty work. Solutions that do not contain wetting agentshave a tendency to float oil to one corner, depending on the recirculation set upby the pump, and in this case the oil may be removed with a skimmer or coalescer(see Fig. 7).The choice of purification method depends on the size of tank and amountof carbon required and also on other available auxiliary equipment. Generally,carbon cartridges are used on small tanks (up to a few hundred gallons), andthe bulk or canister type or the precoat method is used for the very largest tanks.The canister type is also used on the larger tanks supplemental to surface ordepth-type cartridges or on certain automatic filters to supplement the amountof carbon.

    Batch Treatment

    The quality of the carbon is important and special sulfur-free grades areavailable. The average dosage is 10 lb of carbon to treat 500 to 1,000 gal ofwarm plating solution. At least sixty minutes contact time with agitationshould be allowed, followed by some settling before transfer clarificationcan be achieved.

    Continuous PurificationA separate purification chamber holding bulk granular carbon, a carboncanister, or cartridges offers the most flexibility in purification treatment. Bymeans of bypass valving, the amount and rate of flow through the carbon canbe regulated to achieve optimum adsorption of impurities without completedepletion of wetting agents and brighteners in the plating bath. It providesfor uninterrupted production and fewer rejects. When necessary, the carboncan be changed without stopping filtration of the bath. Filtration shouldalways precede carbon treatment, to prevent dirt particles from covering thecarbon surfaces.

    CONTINUOUS CARBON TREATMENT METHODS

    Carbon Cartridges

    Cartridges containing up to 8 oz of either powdered or granular carbon for every10 in. of cartridge length are available and will fit moststandard replaceablefilters that employ this type of media. They may include an outer layer, whichserves as a prefilter, and an inner layer, which serves as a trap filter. These handycartridges are ideal for small filter chambers because of the ease and convenienceof quickly replacing a conventional depth tube with the carbon tube when necessary.They may also be used with submersible filter systems, but in this case theflow rate could be greatly reduced.

    Carbon Canister

    Granular carbon may be used in ready-to-use chambers, each with a number ofcanisters holding up to 10 lb of granular carbon, and placed in line to the tank. Abuilt-in trap filter eliminates migration of the carbon. Prefiltration ahead of thepurification chamber will prevent solids from coating the surface of the carbonin the canister, assuring maximum adsorbency. The carbon in the canister can bereplaced when its adsorption capacity has been reached. This method of separatepurification offers the most flexibility. Any portion or all of the filtrate can betreated as needed by means of a bypass valve after the filter.

    Bulk Carbon Method

    Granular or bulk carbon is poured looselyaround standard depth-type cartridge filtersor sleeves, is poured into specific chambersdesigned for carbon, or is pumped betweenthe plates or disks of other surface media.Since no filter aid is used, fines breakingoff from the piece of carbon will have to bestopped by the surface media. Therefore, aninitial recirculation cycle without enteringthe plating tank or recirculation on the platingtank prior to plating is desirable. Thismethod does not alter the solids-holdingcapacity of depth-type cartridges, as mostof the carbon will stay on the outer surfacelayer; however, carbon removal is not easily accomplished.

    ؟؟؟

    Fig. 8. Suction or dispersion piping

    system with strainer and siphon

    breaker. Drill a hole 2 in. below working

    solution level as a siphon breaker

    to prevent solution loss due to

    unforeseen damage to piping, pump,

    and so on. Chlorinated polyvinyl

    chloride with screwed connections

    offers maximum flexibility and ease

    in installation and may also be used

    on the return line by eliminating the

    strainer and replacing it with a longer

    length of pipe that is open along the

    full length.

    TIPS ON FILTER INSTALLATION

    Filtration equipment should be installedas close to the plating tank as possiblein an area that affords access for servicing.Equipment that is not easy to servicewill not be attended to as frequently asrequired, and the benefits of filtration willnot be maximized. The suction line shouldalways have a larger diameter than the dischargeto avoid starving the pump (e.g.,1 in. versus in. or 2 in. versus 1.5 in.) Where it isnecessary to install theequipment more than 10 to 20 ft away, check the pump suction capabilitiesand increase the size of the suction piping (1.5 in. instead of 1 in., or 2 in.instead of 1.5 in.) to offset the pressure loss.Hoses made of rubber or plastic should be checked for compatibility withthe different solutions. Strong, hot alkaline and certain acid solutions such aschromium are especially aggressive. The use of chlorinated polyvinyl chloride(CPVC), polypropylene, or other molded plastic piping for permanent installationis becoming more common. Some plastics are available with socket-type fittings,which are joined with solvents. Their chemical inertness and temperaturecapabilities are excellent. Iron piping, lined with either rubber or plastic, is idealbut usually limited to use on a larger tank capable of justifying the investment.It should be pointed out that whenever permanent piping can be used in andout of the tank a more reliable installation will exist, since there is no shiftingto loosen fittings, and collapsing or sharp bending of hoses is eliminated. Thesuction should be located away from anode bags, to avoid their being drawn intothe line and causing cavitation. Strainers on the suction are always advisable.It is also desirable to drill a small opening into the suction pipe below thenormal solution operating level on permanent installations so that, shouldany damage occur to the system, the siphon action or suction of the pump willbe broken when the level reaches the hold (Fig. 8). This provides added safetyduring unattended operation. Whenever automatic equipment is operated,some provision must be made to protect against unforeseeable events thatcould cause severe losses. This includes some form of barrier or removablestrainer to prevent the suction of parts into the pump. The addition of a pressuregauge is strongly recommended to determine the initial pressure requiredto force the solution through the filter and also to determine when the filtermedia needs to be replaced.When starting up a new filter system, or after servicing an existing system,it is advisable to completely close the valve on the downstream side of thefilter; in this way, the pump will develop its maximum pressure, and one canimmediately determine whether thesystem is secure. Sometimes filtrationsystems are tested on a cold solution and, in turn, will leak on a hot solutionand vice versa. Therefore, a further tightening of cover bolts, flange bolts,and so on may be necessary after the filter has been operating at productiontemperature and pressure. If pump curves are not available, one may wishto check the flow at different pressure readings to determine a reasonabletime for servicing the equipment before the flow rate has dropped too low toaccomplish good dirt removal.

jala-logo4.png
شرکت جلاپردازان پرشیا
تولیدکننده محصولات و تجهیزات آبکاری
خدمات آبکاری، پوشش دهی و مشاوره
تهران - شهرک صنعتی باباسلمان
02165734701 - 02165734702
ایمیل: service@jalapardazan.com

جستجو