مقالات عملیات سطحی

فرایند اسپری الکترواستاتیک

ELECTROSTATIC SPRAY PROCESSES

فرایند اسپری الکترواستاتیک

 

BY JOEL RUPP, ERIC GUFFEY, AND GARY JACOBSEN

TW RANSBURG ELECTROSTATIC SYSTEMS, TOLEDO, OHIO

قواعد الکترواستاتیک

آبکاری الکترواستاتیک در اوایل دهه 1950 آغاز شد. مهندسان پوشش نیاز به یک روش کاربردی دارند که به طور قابل توجهی باعث افزایش کارایی انتقال و کاهش هزینه های آبکاری می شود

آنها تصور می کردند که ذرات و اشیاء با  بارهای مشابه، یکدیگر را دفع می کنند، و با بارهای مخالف یکدیگر را جذب می کنند.

 

PRINCIPLES OF ELECTROSTATICS

Electrostatic Theory

Electrostatic finishing got its start in the early 1950s. Coatings engineers needed an application method that would significantly increase transfer efficiency and reduce finishing costs. They reasoned that particles and objects with like charges repel each other, and objects with unlike charges attract each other.

همین امر برای پوشش های پاشش و بخشی که باید رنگ آمیزی شود، مورد استفاده قرار می گیرد. آنها کشف کردند که با ایجاد بار منفی در ذرات رنگ پراکنده و ایجاد بار مثبت در  قطعه کار (یا ساختن زمین خنثی)، یک میدان الکترواستاتیک ایجاد می شود که ذرات رنگ را به قطعه کار می کشد.

 The same would apply to charged spray coatings and a part to be painted. They discovered that by negatively charging the atomized paint particles and positively charging the workpiece to be coated (or making it a neutral ground), an electrostatic field would be created that would pull paint particles to the workpiece. (See Fig.1.)

با یک تفنگ اسپری الکترواستاتیک معمولی، یک الکترود شارژ در نوک دستگاه اسپری قرار دارد. الکترود یک بار الکتریکی از منبع برق دریافت می کند. رنگ به عنوان آن که از الکترود خارج می شود، ذوب می شود و ذرات رنگ یونیزه می شوند (الکترون ها را جمع می کند تا بار منفی بگیرند). میدان الکترواستاتیک بین الکترود و قطعه کار زمینی ایجاد می شود.

With a typical electrostatic spray gun, a charging electrode is located at the tip of the atomizer.

The electrode receives an electrical charge from a power supply. The paint is atomized as it exits past the electrode, and the paint particles become ionized (pick up additional electrons to become negatively charged) An electrostatic field is created between the electrode and the grounded workpiece.

ذرات رنگ منفی بارگذاری شده به زمین خنثی جذب می شوند. همانطور که ذرات بر روی قطعه کار سپرده می شوند، شارژ از بین می رود و به منبع تغذیه از طریق زمین باز می گردد، به این ترتیب مدار الکتریکی را تکمیل می کند. این فرایند برای راندمان بالای انتقال  به کار می رود.

The negatively charged paint particles are attracted to the neutral ground. As the particles deposit on the work piece, the charge dissipates and returns to the power supply through the ground, thus completing the electrical circuit. This process accounts for the high transfer efficiency.

بسیاری از پوشش های اتمی در قسمت انتهایی قرار دارند. درجه ای که نیروی الکترواستاتیک بر مسیر ذرات رنگ تاثیر می گذارد بستگی دارد به بزرگی آنها، سرعت حرکت آنها و نیروهای دیگر در داخل کابین اسپری مانند گرانش و جریان هوا بستگی دارد. ذرات بزرگ که در سرعت های بالا اسپری می شوند، دارای نیروی زیادی هستند و موجب کاهش اثر نیروی الکترواستاتیک می شوند.

Most of the atomized coating will end up on the part. The degree to which electrostatic force influences the path of paint particles depends on how big they are, how fast they move, and other forces within the spray booth such as gravity and air currents.

 Large particles sprayed at high speeds have great momentum, reducing the influence of the electrostatic force.

نیروی جرمی جهت ذرات می تواند بیشتر از میدان الکترواستاتیک باشد. افزایش زمان حرکت ذرات در هنگام نقاشی یک سطح پیچیده می تواند سودمند باشد، زیرا این حرکت می تواند بر اثر کلیدی فارادی غلبه کند - گرایش ذرات رنگ به بار تنها در اطراف ورودی حفره است.

A particle’s directional force inertia can be greater than the electrostatic field. Increased particle momentum can be advantageous when painting a complicated surface, because the momentum can overcome the Faraday cage effect — the tendency for charged paint particles to deposit only around the entrance of a cavity. (See Fig. 2.)

از سوی دیگر، ذرات رنگ کوچک که در سرعت های پایین اسپری می شوند، دارای حرکت کم هستند، به این ترتیب به  نیروی الکترواستاتیک اجازه  غلبه داده و رنگ بر روی قطعه کار می­گیرد. این شرایط برای سطوح ساده قابل قبول است اما به مشکلات قفس فرادی بسیار حساس است.

یک سیستم الکترواستاتیک باید سرعت ذرات رنگ و ولتاژ الکترواستاتیکی را برای بهینه سازی بازده انتقال پوشش  متعادل کند.

On the other hand, small paint particles sprayed at low velocities have low momentum, allowing the electrostatic force to take over and attract the paint onto the workpiece. This condition is acceptable for simple surfaces but is highly susceptible to Faraday cage problems. An electrostatic system should balance paint particle velocity and electrostatic voltage to optimize coating transfer efficiency.

مزیت اصلی ارائه شده توسط یک سیستم رنگ آمیزی الکترواستاتیک، بازده انتقال است در برخی از کاربردهای خاص، زنگ های الکترواستاتیک می توانند راندمان انتقال بیش از 90٪ را به دست آورند.

این کارآیی بالا باعث کاهش قابل ملاحظه هزینه شده به علت کاهش میزان پرشده می شود. یک پدیده آبکاری الکترواستاتیک که به عنوان «بسته بندی» شناخته می شود باعث می شود که برخی از ذرات رنگی که در گذشته از این قطعه کار می کنند به پشت قطعه جذب شوند، افزایش بازده  انتقال باعث کاهش انتشار گازهای گلخانه ای و کاهش هزینه های دفع زباله های خطرناک می شود. تمیز کردن اسپری و نیاز به نگهداری نیز کاهش می یابد 

Electrostatic Advantages

The main benefit offered by an electrostatic painting system is transfer efficiency. In certain applications electrostatic bells can achieve a high transfer efficiency exceeding90%. This high efficiency translates into significant cost savings due to reduced overspray.

A phenomenon of electrostatic finishing known as “wrap” causes some paint particles that go past this workpiece to be attracted to the back of the piece, further increasing transfer efficiency. Increased transfer efficiency also reduces VOC emissions and lowers hazardous waste disposal costs. Spray booth cleanup and maintenance are reduced.

کاربردهای پوشش

هر ماده ای که می تواند اتمیزه  شود، می تواند یک بار الکترواستاتیک را بپذیرد. پوشش، مینا، لاک و پوشش اسکلت دو جزء کم، متوسط ​​و جامد به صورت الکترواستاتیکی اعمال می شود.انواع مختلف سیستم های الکترواستاتیک می توانند پوشش ها را بدون توجه به هدایت آنها اعمال کنند. پوشش های آب و فلزی می تواند بسیار هدایت کننده باشد. 

Coating Application

Any material that can be atomized can accept an electrostatic charge. Low-, medium- and high-solids solvent borne coatings, enamels, lacquers, and two-component coating scan be applied electrostatically.

 The various types of electrostatic systems can apply coatings regardless of their conductivity. Waterborne and metallic coatings can be highly conductive.

 

پوشش های رقیق کننده  نارسانا هستند. هر پوشش فلزی می تواند ذرات فلز رسانا داشته باشدبرای جلوگیری از اتصال کوتاه در خط تغذیه، این پوشش های فلزی باید در گردش نگه داشته شوند. همانطور که ولتاژ بالا در سیستم معرفی می شود، ذرات فلزی می توانند به صورت یک مسیر رسانایی تشکیل دهند. ممکن است به علت هدایت پوشش برای جلوگیری از اتصال کوتاه شدن به زمین، اصلاحات  سیستم ضروری باشد

Solvent-borne coatings tend to be nonconductive. Any metallic coatings can contain conductive metal particles. These metallic coatings must be kept in circulation to prevent a short circuit in the feed line. As high voltage is introduced into the system, the metal particles can line up to form a conductive path.

System modifications may be required because of coating conductivity to prevent the charge from shorting to ground. (See Fig. 3.)

ایمنی آبکاری الکترواستاتیک:  اگر تجهیزات به درستی نگهداری شود و روشهای ایمنی دنبال شود، ایمن است. تمام اقلام در محل کار، از جمله کابین اسپری، نوار نقاله، چوب لباسی قطعات، تجهیزات نرم افزاری (مگر اینکه از پوشش های رسانا / آب)، و اپراتور اسپری باید اتصال  داشته باشد همان گونه که بار الکتریکی در تماس با اجزای غیرثابت قرا رمی گیرد، اسکن شارژ جذب و ذخیره می شود. این به عنوان یک ساختار ظرفیت بار شناخته می شود.در نهایت، شارژ کافی ایجاد می شود تا وقتی که آیتم غیرقابل جابجایی در فاصله جرقه ای از زمین قرار گیرد، شارژ به عنوان جرقه شارژ می شود.چنین جرقه ای می تواند انرژی کافی برای احتراق بخارات قابل اشتعال و غبار هایی که در ناحیه اسپری موجود است، داشته باشد. یک کارگر غیرقانونی نمی داند که ظرفیت خازنی جذب شده تا زمانی که دیر شود. کارگران هرگز نباید کفش های لاستیکی و یا چوب پنبه ای را که می توانند به خازن های غیرمتصل تبدیل شوند، بپوشانند.دستگاه های خاصی برای کفش های متصل  موجود است. اگر کارگران از اسلحه های دستی استفاده می کنند، باید آنها را با دست خالی یا دستکش هایی که دارای نوک انگشتان و دست نخورده باشند، اجازه می دهد که تماس پوستی کافی ایجاد کنند.اتصال مناسب تمام تجهیزاتی که برای فرآیند ولتاژ بالا مورد استفاده قرار نمی گیرد ضروری است. پایه های اتصال باید به تجهیزات متصل شوند و به یک زمین مشخص متصل شوند.بازرسی سریع از تمام تجهیزات، از جمله نوار نقاله ها و قطعات پانچ، می تواند زمینه های ناسالم را نشان دهد.

از بین بردن چیدمان رنگ از قطعات اسکن پنبه کمک می کند تا اطمینان حاصل شود که قطعات کار متصل هستند. اشیای غیرمتصل مانند ابزار و ظروف باید از منطقه آبکاری دور  شوند.

Operating Electrostatics Safely

Electrostatic finishing is safe if the equipment is maintained properly and safety procedures are followed. All items in the work area must be grounded, including the spray booth, conveyor, parts hangers, application equipment (unless using conductive/waterborne coatings), and the spray operator.

As electrical charges come in contact with ungrounded components, the charge scan be absorbed and stored. This is known as a capacitive charge buildup.

 Eventually, enough charge is built up so that when the ungrounded item comes within sparking distance of a ground, it cand is charge as a spark.

 Such a spark may have enough energy to ignite the flammable vapors and mists that are present in the spray area. An ungrounded worker will not know that the capacitive charge has been absorbed until it is too late.

Workers should never wear rubber- or cork-soled shoes, which can turn into ungrounded capacitors.

 Special shoe-grounding devices are available. If workers are using hand-held guns, they should grasp them with bare hands or with gloves with cut-outs for fingertips and palms that allow adequate skin contact.

 Proper grounding of all equipment that is not used for the high-voltage process is essential. Grounding straps should be attached to equipment and connected to a known ground.

A quick inspection of all equipment, including conveyors and part hangers, can reveal improper grounding.

 Removing paint buildup from parts hanger scan help ensure that workpieces are grounded. Ungrounded objects, such as tools and containers, should be removed from the finishing area.

 

باردار کردن  اجزای رنگی

شارژ الکترواستاتیک ذرات رنگی در اوایل دهه 1950 آغاز شد. مهندسان به دنبال روش هایی برای کاهش هزینه آبکاری محصولات بودندهارولد رانسبرگ، مخترع فرایند الکترواستاتیک، تصریح کرد که از آنجایی که بارهای الکتریکی ناهمنام به یکدیگر جذب می شود، ایده ی مشابهی نیز برای ذرات  رنگ و قطعاتی که باید رنگ آمیزی شود وجود دارد.

ین یک باور عمومی است که بارهای هم نام یکدیگر را رفع و بارهای ناهمنام یکدیگر را جذب می کنند . این درست است با هر دو میدان مغناطیسی و با فرایند الکترواستاتیک شارژ رنگ ذرات فرآیند الکترواستاتیک تقریبا به همان شیوه ای است که یک آهنربا معمولی کار می کند.

با ایجاد یک میدان الکترواستاتیک بین یک ذره رنگی منفی و یک قطعه قطعه قطعه قطعه شده، ذرات رنگ جذب می شوند و خود را بر روی قطعه کار قرار می دهند.

PAINT PARTICLE CHARGING

Electrostatic charging of paint particle got its start back in the early 1950s. Engineers were looking for methods to reduce the cost of finishing products. Harold Ransburg, the inventor of the electrostatic process, reasoned that since unlike electrical charges are attracted to each other, the same idea would apply to charged paint particles and a part to be painted.

Everyone’s heard the saying that “opposites attract and likes repel.” This is true with both a magnetic field and with the electrostatic process of charging paint particles.

The electrostatic process is almost identical to the way a common magnet works. By creating an electrostatic field between a negatively charged paint particle and a positive grounded workpiece, the paint particles are attracted and deposit themselves onto the workpiece. 

پایه بلوک ساختمان انرژی الکتریکی ذرات باردار است. همه چیز از ذرات باردار الکتریکی ساخته شده است. این ذرات یا خنثی، منفی یا مثبت هستند. در روزهای اولیه شارژ ذرات، فرایند به نام فرآیند شماره یک توسط هارولد رانسبرگ برای باردار کردن ذرات رنگی ایجاد و گسترش یافته بود.ذرات رنگی به وسیله اسلحه های اسپری معمولی به یک میدان الکترواستاتیک اسپری می شوند. دو شبکه سیم به موازات یکدیگر در یک فاصله مشخص تنظیم شده و سپس قطعات از طریق این شبکه ها منتقل شدند. در یک انتهای شبکه ها، ذرات رنگ پراکنده در میدان الکترواستاتیک اسپری شدند.

The basic building block of electrical energy is the charged particle. All matter is made from electrically charged particles. These particles are either neutral, negative, or positive. Back in the early days of particle charging, a process referred to as the Number One Process was developed by Harold Ransburg to charge paint particles.

Paint particles were sprayed into an electrostatic field by conventional air spray guns. Two wire grids were aligned parallel to each other at a certain distance, then the parts were conveyed through these grids. At one end of the grids, atomized paint particles were sprayed into the electrostatic field. 

ذرات رنگ به صورت منفی شارژ می شوند و به قسمت های مثبت زمین متصل می شوند.

این شبکه های سیم در حال حاضر سیم الکترود در یک تفنگ اسپری الکترواستاتیک است. سه شایع ترین روش شارژ کردن ذرات رنگی، تفنگ اسپری الکترواستاتیک، زنگ چرخشی یا دیسک چرخشی است. همه این سه روش با همان اصل مشترک میدان الکترواستاتیک بین اتمیزر و قطعه کار کار می کنند و سپس ذرات رنگ آمیزی شده را به میدان می رسانند و آنها را جذب می کنند و خود را در قطعه قطعه قطعه قطعه شده قرار می دهند.با یک اسپری هوا یا یک اسپری الکترواستاتیک HVLP، یک ولتاژ DC ولتاژ بالا به الکترود نازل اعمال کننده، ایجاد میدان الکترواستاتیک بین تفنگ و هدف هدف زمین 

 The paint particles would become negatively charged and would be attracted to the positively grounded parts.

These wire grids are now the wire electrode in an electrostatic spray gun. The three most common ways of charging paint particles are the electrostatic spray gun,a rotary bell, or a rotary disk.

All three of these methods work by the same common principle of the electrostatic field between the atomizer and the workpiece then introduce atomized paint particles into the field and they will be attracted to and deposit themselves on the positive grounded workpiece.

With an air spray or an HVLP electrostatic spray gun, a high voltage DC charge is supplied to the applicator’s nozzle electrode, creating an electrostatic field between the gun and the grounded target object.

 (See Fig. 4.)

مواد پوشش در نقطه اتمی سازی شارژ می شوند. ذرات رنگ شارژ جذب شده و در جسم هدف زمین قرار می گیرند.

این بار الکترواستاتیک اجازه می دهد تا یک کارآمدتر و یکنواخت از مواد پوشش را به جلو، لبه ها، طرف و عقب محصول بپوشانید. نیروهای الکترواستاتیک اجازه می دهد تا درصد زیادی از ذرات شارژ شده را بر روی قطعه کار قرار دهیم.

فرآیند الکترواستاتیک نیز می تواند برای شارژ ذرات رنگ با استفاده از اسپری های الکترواستاتیک بدون هوا و بدون هوا استفاده شود. تنها تفاوت این است که مواد پوشش توسط روش های مختلف پراکنده می شوند.

The coating materials are charged at the point of atomization. The charged paint particles are attracted to and deposited on the grounded target object.

This electrostatic charge allows a more efficient, uniform application of the coating material to the front, edges, sides, and back of the product. The electrostatic forces allow for a high percentage of the charged paint particles to be deposited on the workpiece.

The electrostatic process can also be used to charge paint particles using airless and air-assisted airless electrostatic spray guns. The only difference is the coating material is atomized by different methods. 

یک اسپری هوا یا اسلحه الکترواستاتیک HVLP با استفاده از فشار هوا بسیار پایین برای تمیز کردن ماده پوشش، از روش های بی هوازی بدون هوا و هوا استفاده از فشار بسیار بالاتر است. مواد پوشش در فشار بالا به دستگاه اسپری تحویل داده می شود

در آنجا، ماده با عبور از یک سوراخ بسیار کوچک تحت فشار بالا، اتمیزه می شود

ذرات گرد و غبار اسپری سپس به صورت الکتروستاتیکی شارژ می شوند و به قطعه کار به شکل مشابه با اسپری هوا الکترواستاتیک یا HVLP الکترواستاتیک جذب می شوند

امروزه زنگ های چرخشی عموما حدود 1 تا 3 سانتیمتر و قطر چرخشی حدود 6 تا 12 سانتیمتر است.

An air spray or HVLP electrostatic gun utilizes much lower air pressure to atomize the coating material, the airless and air assisted airless methods use a much higher pressure.

 Coating material is delivered at high pressure to the atomizer.

 There, the material is atomized by passing through a very small orifice under high pressure. The resulting spray mist particles then become electrostatically charged and are attracted to the workpiece in the same manner as electrostatic air spray or electrostatic HVLP. Today, rotary bells are generally about 1 to 3 in. in diameter and rotary disks are about 6 to 12 in.

این اسپری ها بر اساس یک اصل عمل می کنند، مگر اینکه آنها به صورت قطعه قطعه شده متفاوت باشند زنگ ها با محور خود افقی به قسمت قرار گرفته و دیسک ها به صورت عمودی قرار می گیرند.

یک دیسک دوار یا زنگ نازک و حتی پوشش را به لبه دستگاه اسپری توزیع می کند. این پوشش از طریق نیروی الکترواستاتیک یا نیروی سانتریفیوژ بر روی آن پراکنده می شود.

These atomizers operate on the same principle except they are positioned differently to the workpiece. Bells are positioned with their axis horizontal to the part, and disks are positioned vertically.

A rotating disk or bell distributes a thin, even coating to the edge of the atomizer. There the coating is atomized either by the electrostatic force or centrifugal force.

یک اتمیزر چرخشی کم سرعت از تقریبا تمام نیروهای الکترواستاتیک استفاده می کند، یک اتمیزر چرخشی با سرعت بالا به نیروی سانتریفیوژ اسپری کننده متصل است تا مواد پوشش را به اتمسفر

سپس یک ولتاژ بالا ولتاژ DC به دیزل متناوب منتقل می شود، ایجاد میدان الکترواستاتیک بین آن و هدف هدف زمین است.

 A low speed rotary atomizer utilizes almost all electrostatic forces, a high speed rotary atomizer relies on the centrifugal force of the atomizer to atomize the coating material. A DC high voltage charge is then supplied to the rotating atomizer, creating an electrostatic field between it and the grounded target object. 

ذرات رنگ بار منفی بار جذب می شوند و در  قطعه شده قرار می گیرند

نیروها بین ذرات شارژ شده و هدف اصلی برای تبدیل عاری از پر شدن نور به دور کافی و قرار دادن آن بر روی سطح پشتی هدف کافی است

بنابراین، یک درصد بسیار زیاد از ذرات رنگی در این قسمت ذخیره می شود. مقاومت در برابر رنگ، اغلب به عنوان رسانایی نامیده می شود، هنگامی که مواد پاشش الکترواستاتیکی، مهم است.

The negatively charged paint particles are attracted to and deposited on the positive grounded workpiece. The forces between the charged particles and the grounded target are sufficient to turn normal overspray around and deposit it on the back surface of the target; therefore, a very high percentage of the paint particles are deposited on the part. Paint resistivity, often referred to as conductivity, is critical when spraying materials electrostatically. 

مواد آبرسان بسیار هدایت کننده هستند بنابراین، اقدامات مانند دستگاه های ولتاژ مسدود کردن، پروب شارژ خارجی یا کاملا جداسازی عرضه مایع و خطوط مایع باید انجام شود یا ذرات رنگ قادر به حفظ بار الکترواستاتیک

با توجه به مقاومت کم مواد محرمانه، تمام ولتاژ الکترواستاتیک به زمین خاتمه می یابد و سیستم را کوتاه می کند. اگر یکی از سه روش پیشین ذکر شده استفاده نشود، ذرات رنگی را نمی توان از طریق الکترواستاتیکی بکار برد.

Waterborne materials are very conductive; therefore, measures such as voltage blocking devices, external charging probes, or completely isolating the fluid supply and fluid lines must be taken or the paint particles will not be able to maintain the electrostatic charge.

Due to the low resistance of waterborne materials, all of the electrostatic voltage will drain off to ground and short out the system. If one of the three previous methods mentioned are not used, the paint particles cannot be charged electrostatically.

رنگ مواد مقاوم در برابر مواد حلال از یک ماده به دیگری متفاوت است. هنگام پاشیدن پوشش های حاوی حلال با الکترواستاتیک، برای اندازه گیری و نظارت بر مقاومت در برابر رنگ اسپری موادی که بیش از حد هدایت می شوند (مقاومت بسیار کم، اغلب به عنوان "داغ" نامیده می شود) همچنین برخی یا همه ولتاژ الکترواستاتیک را به زمین می اندازد. این به میزان قابل توجهی اثرات الکترواستاتیک بر روی ذرات رنگ را کاهش می دهد.

Solvent-borne materials paint resistivity will vary from one material to another. When spraying solvent-borne coatings with electro statics, it is critical to measure and monitor the resistivity of the paint being sprayed. Materials that are too conductive, (very low resistance, often referred as “hot”) will also drain some or all of the electrostatic voltage off to ground. This will greatly reduce the electrostatic effects on the paint particle. 

از سوی دیگر، هنگام استفاده از مواد با مقاومت بسیار بالا، اغلب به عنوان "مرده" نامیده می شود، ذرات رنگ به راحتی بار الکترواستاتیک را قبول نمی کنند و بازده انتقال بسیار ضعیف است.  

تامین کنندگان پوشش می توانند به راحتی مواد مضر حلال خود را در محدوده خاصی مقاومت کنند

مقاومت مطلوب ممکن است بسته به ابزار مورد استفاده برای کاربرد متفاوت باشد

. به عنوان مثال، با استفاده از دیسک یا زاویه الکترواستاتیک، محدوده مقاومت مطلوب بین 0.05 و 1 مگاوام بر روی یک مقاومت مقاومت رنگی (Ransburg) است. هرچند یک تفنگ اسپری الکترواستاتیک می تواند به طور موثر اسپری مواد پوشش بین 0.1 تا 00 megohms مقاومت. مثال دیگر شماره 2 فرآیند اسپری الکترواستاتیک در محل است

On the other hand, when using materials with a very high resistance, often referred to as “dead,” the paint particles will not readily accept the electrostatic charge and the transfer efficiency will be very poor.

 Coating suppliers can easily formulate their solvent-borne materials to be within a specific resistivity range. The optimum resistivity may differ depending on the tool used for application. For example, with an electrostatic disk or bell, the optimum resistivity range is between 0.05 and 1 megohms on a (Ransburg) paint resistivity meter.

An electrostatic spray gun however, can effectively spray coating materials between 0.1 to 00 megohms of resistance. Another example is the No. 2 Process on-site electrostatic spray gun

این اسلحه نیاز به یک مقاومت دقیق تر رنگ دارد، زیرا صرفا بر روی بار الکترواستاتیک به اتمسفر کردن مواد پوشش متکی است.

رنگ مورد استفاده با این اسلحه باید بین 0.1 تا 1 مگا هرتز بر روی تستر رنگ (Ransburg) برای کار درست انجام شود

یکی دیگر از عناصر کلیدی در فرایند الکترواستاتیک یا شارژ ذرات رنگ، اندازه ذرات است

ذرات بزرگ با سرعت بالا سرعت بیشتری دارند و تاثیر نیروی الکترواستاتیک را کاهش می دهند.

افزایش اندازه ذرات و حرکت می تواند یک مزیت در پوشش سطوح پیچیده ای باشد، زیرا این حرکت می تواند بر روی محوطه قفس فرادای غلبه کند (جایی که ذرات رنگ به لبه های یک قطعه کاری جذب می شوند و در عین حال اجتناب از داخل گوشه ها و مناطق محصور شده).

از سوی دیگر، ذرات رنگ کوچک که در سرعت های پایین اسپری می شوند، دارای حرکت کم هستند، بنابراین نیروی الکترواستاتیک اجازه می دهد تا مواد پوشش را به هدف هدف جذب کند. این شرایط برای سطوح تقریبی قابل قبول است، اما به شدت به مشکلات قفس فرادی مربوط می شود

This gun requires a more precise paint resistivity because it relies solely on the electrostatic charge to atomize the coating materials. The paint used with this gun must read between 0.1 to 1 megohms on the (Ransburg) paint test meter to work properly. Another key element in the electrostatic process or charging of paint particles is particle size.

Large particles sprayed at high speed have greater momentum and reduce the influence of the electrostatic force. Increased particle size and momentum can be an advantage when coating complicated surfaces because the momentum can overcome the Faraday cage areas (where paint particles are attracted to the edges of a work piece while avoiding inside corners and recessed areas). On the other hand, small paint particles sprayed at low velocities have low momentum, thus allowing the electrostatic force to take over and attract the coating material to the target object. This condition is acceptable for simples surfaces but is highly susceptible to Faraday cage problems.

فرایند و تجهیزات الکترواستاتیک

استفاده از الکترواستاتیک مواد پاشش برای بهبود کیفیت آبکاری و بهبود کارایی انتقال افزایش یافته است. (شکل 5 را ببینید) در حال حاضر هفت نوع فرآیند الکترواستاتیک برای کاربرد اسپری وجود دارد:

ELECTROSTATIC PROCESSES/EQUIPMENT

The electrostatic application of atomized materials was developed to enhance finish quality and improve transfer efficiency. (See Fig.5.) Presently, there are seven types of electrostatic processes for spray application:

Electrostatic air spray atomization

Electrostatic high-volume, low-pressure (HVLP) atomization

Electrostatic airless atomization

Electrostatic air-assisted airless atomization

Electrostatic electrical atomization

Electrostatic rotary-type bell atomization

Electrostatic rotary-type disk atomization

Regardless of the electrostatic finishing systems, each has its advantages and limitations. What may be suitable for one situation may not be suitable in another. (See Table I.)

اسپری الکترواستاتیک اتمیزه کردن هوا

اسپری هوا با الکترواستاتیک از کوره هوا با دهانه های دقت کمی استفاده می کند که اجازه می دهد هوا فشرده به رنگ به منظور اتمیزه کردن بهینه هدایت شود. اسپری هوا الکترواستاتیک امروزه به علت کنترل و قابلیت انعطاف پذیری بیشترین نوع اتمیزاسیون در صنعت است. اسپری الکترواستاتیک هوا، با استفاده از شار الکترواستاتیک برای پوشش رنگ در اطراف لبه ها و جذب پرتوی که باعث دفع غیر قابل استفاده می شود، راندمان انتقال بسیار بالا را فراهم می­کند. اسپری هوا استاندارد الکترواستاتیک، کارایی انتقال را در محدوده 40 تا 90 درصد بسته به نوع مواد و کاربردهی فراهم می کند.

Electrostatic Air Spray Atomization

Electrostatic air spray uses an air cap with small precision openings that allows compressed air to be directed into the paint for optimum atomization. Electrostatic air spray is the most widely used type of atomization in the industry today due to its control and versatility. Electrostatic air spray provides very high transfer efficiency by utilizing the electrostatic charge to wrap paint around edges and capture overspray that would have been unusable waste. Standard electrostatic air spray provides transfer efficiencies in the 40 to 90% range depending on the type of material and application.

 

اتمیزاسیون اسپری الکترواستاتیک HVLP

اسپری الکترواستاتیک HVLP با استفاده از همان ویژگی های اتمیزه کردن به عنوان تکنولوژی اسپری الکترواستاتیک با تغییرات جزئی مشخص می شود.

هنگام استفاده از هوا HVLP، فشار هوای فشرده در کوره هوا باید به مقدار 0.1 تا 10 psi کاهش یابد. راندمان انتقال هنگام استفاده از اسپری HVLP بیشتر است تا سرعت ذرات را کاهش دهد و ماده را خنثی کند بنابراین باعث کمتری زباله و منفذ مواد می شود.

Electrostatic HVLP Spray Atomization

Electrostatic HVLP spray utilizes the same atomization characteristics as electrostatic air spray technology with slight modifications. When using air HVLP, the pressure of the compressed air at the air cap must be reduced to a range of 0.1 to 10 psi. Transfer efficiency is greater when using HVLP spray to lower the particle velocity and atomize the material thus causing less waste and blow-by of material.

برخی از تجهیزات الکترواستاتیک را می توان به آسانی تبدیل و یا تبدیل بین اسپری هوا و فن آوری اسپری HVLP با تغییر  چهار قسمت پوشش داد. تکنولوژی اسپری HVLP به رعایت قوانین سختگیرانه EPA نیاز دارد که نیاز به کاهش مقدار VOCs و زباله­ها دارد. اسپری الکترواستاتیک HVLP، کارایی انتقال را در محدوده 60 تا 90 درصد، بسته به نوع ماده و کاربرد تامین میکند.

Some electrostatic equipment can be easily converted or transformed between air spray and HVLP spray technology by simply changing four parts. HVLP spray technology helps meet stringent EPA codes requiring reduced VOCs and waste. Electrostatic HVLP spray provides transfer efficiencies in the 60 to 90% range depending on the type of material and application

اتمیزاسیون اسپری بی هوازی الکترواستاتیک

فن آوری اسپری الکترواستاتیک بدون هوا از اصل سیالات در فشارهای بالا (500-5،000 psi) استفاده می کند که از طریق سوراخ نازل سیال بسیار کوچک اتمیزه می کند.

اندازه و شکل الگوی اسپری همراه با کیفیت مایع توسط سوراخ نازل کنترل می شود. تکنولوژی اسپری بدون هوا، پس از اسپری هوا، برای کمک به نرخ های سریع تر استفاده از تحویل بالاتر و ویسکوزیته سنگین تر در بخش های بزرگ تکامل یافته است.

Electrostatic Airless Spray Atomization

Electrostatic airless spray technology utilizes the principle of fluid at high pressures (500-5,000 psi) atomizing through a very small fluid nozzle orifice.

Size and shape of the spray pattern along with fluid quality is controlled by the nozzle orifice. Airless spray technology evolved after air spray to aid in faster application rates using higher delivery and heavier viscosities on larger parts.

 

اتمی کردن الکترواستاتیک بی هوا و با کمک هوا

فن آوری اسپری الکترواستاتیک هوا با کمک هوا بدون استفاده از اصل اسپری بدون هوا برای خنک کردن مایع در کاهش فشار مایع با کمک اسپری هوا به منظور کمک به کاهش تیرگی الگو و تاثیر شکل الگو. تکنولوژی اسپری بدون هوا با کمک برخی از ویژگی های مطلوب هر دو اسپری بدون هوا و اسپری هوا ارائه می دهد

ویژگی های مطلوب، میزان مصرف متوسط تا زیاد، توانایی اسپری ویسکوزیته های سنگین در سرعت های پایین و راندمان انتقال بالا است.

Electrostatic Air-Assisted Airless Atomization

Electrostatic air-assisted airless spray technology uses the airless spray principle to atomize the fluid at reduced fluid pressure with assisted atomizing air to aid in reducing pattern tailing and affect pattern shape.

Air-assisted airless spray technology offers some of the desirable characteristics of both airless spray and air spray. The desirable characteristics being medium to high delivery rates, ability to spray heavy viscosities at low velocities, and high transfer efficiency.

 

اتمیزاسیون الکترواستاتیک الکتریکی

اتمیزاسیون الکترواستاتیک الکتریکی با استفاده از یک زاویه چرخشی در انتهای یک تفنگ انجام می شود تا رنگ به لبه زنگ به طور مساوی ایجاد کند.

هنگامی که ماده پوشش به لبه زنگ می رسد، به یک بار الکتریکی معرفی می شود.

شارژ الکتریکی در لبه تیز (تقریبا 100 کیلو ولت) باعث می­شود که یک مقیاس مقاومت الکتریکی متوسط (0.1 تا 1 مگا هام) برای پخش در تولید

کاربردهای خالص الکتریکی که فرایندی نسبتا کندتر از اسپری هوا یا تکنولوژی هوای بدون هوا است و نیاز به تکنیک رنگ اسپری نوع چرخشی با توجه به الگوی اسپری زنگ دارد، اما امروزه بیشترین اثر انتقال اسپری تفنگ در صنایع امروز است.سرعت فوق العاده روان در جلو از الگوی اسپری راندمان انتقال تقریبا 100٪ در اکثر محصولات به دست می آید.این کارآیی انتقال بالا باعث ایجاد  صنعت نقاشی و تعمیر ماشین آلات و اثاثیه در محل  شد.

Electrostatic Electrical Atomization

Electrostatic electrical atomization is accomplished by using a rotary bell on the end of a gun to evenly dispense paint to the edge of the bell.

Once the coating material reaches the edge of the bell it is introduced to an electrical charge. The electrical charge at the sharp edge (approximately 100 kV) causes paint of a medium electrical resistance range (0.1 to 1 megohms) to disperse onto the product. The pure electrical application is a slightly slower process than an air spray or air-assisted airless technology and requires a rotational type spray paint technique, due to the bells spray pattern, but is the most transfer efficient spray gun process in the industry today. The ultra-soft forward velocity of the spray pattern achieves transfer efficiencies of nearly 100% on most products. This high transfer efficiency spawned the industry of painting and refurbishing machinery and furniture in place.

 

اتمی کردن زنگوله ای الکترواستاتیک

اتمیزر زنگ الکترواستاتیک یک زنگ چرخشی با سرعت بالا است که از نیروی سانتریفیوژ و اتمیزاسیون الکتریکی برای اتمیزه کردن مواد استفاده می کند و به طور موثر  مواد از لبه زنگ به قطعه هدف را انتقال می دهد.  زنگ در موتور توربین استفاده می شود که در آن الگو با استفاده از هوای فشرده با دقت هدایت می شود، که به الگوی در لبه فنجان زنجیر نشان داده می شود

هوای فشرده به سرعت به جلو حرکت می کند تا به نفوذ در مناطق محصور کمک کند. زنگ ها معمولا به صورت ثابت یا متقابل برای تولید محصولات پوشش در نقاله های خطی نصب می شوند. زنگ ها نیز ممکن است در هر دو طرف نوار نقاله قرار گیرد. اتمیزور چرخشی نوع زنجیره ای، کارایی انتقال را در محدوده 70 تا 95 درصد فراهم می کند

Electrostatic Rotary-Bell-Type Atomization

An electrostatic bell atomizer is a high-speed rotary bell that uses centrifugal force as well as electrical atomization to atomize material and efficiently transfer material from the bell edge to the target being painted. (See Fig. 6.) The bell is used on a turbine motor where the pattern is carefully directed by the use of compressed air, introduced to the pattern at the edge of the bell cup.

 The compressed air gives them aterial forward velocity to aid in penetrating recessed areas. The bells are usually mounted stationary or reciprocated to coat products on straight line conveyors. The bells may also be positioned on both sides of the conveyor. Rotary-bell-type atomization provides transfer efficiencies in the 70 to 95% range.

 

الکترواستاتیک آبی

در طول چند سال گذشته، مقررات دولتی در مورد انتشار گازهای گلخانه ای از مواد استفاده شده از رنگ، نیاز به پوشش سازندگان برای کاهش مقدار VOC از مواد پوشش خود . پوشش های آب در طول سال ها در اطراف بوده است، اما با توجه به مقررات سختگیرانه دولت، در صنعت آبکاری صنعت امروز به سرعت در حال افزایش است

.

بسیاری از کاربران فعلی پوشش های حاوی حلال مجبور به استفاده از پوشش های سازگارتر در آینده خواهند شد و بسیاری از این تولیدکنندگان، در تلاش برای استفاده از بسیاری از تجهیزات موجود خود به سمت پوشش های حاوی آب در حرکت هستند.

WATERBORNE ELECTROSTATICS

Over the last several years, government regulations on VOC emissions coming from paint application facilities, have fueled the need for coating manufacturers to reduce the amount of VOC from their coating materials. Waterborne coatings have been around for many years, but due to tougher government regulations they are rapidly gaining more and more momentum in today’s finishing industry.

 Many of current users of solvent borne coatings will be forced to make the switch to a more compliant coating in the future.

And many of these manufacturers, in an effort to utilize as much of their existing finishing equipment possible, will make the move to waterborne coatings.

 

اگر چه استفاده از این پوشش های حاوی آب در اصل همانند پوشش های حاوی حلال است، باید عوامل زیادی را مورد توجه قرار دهیم. آیا اجزای سیستم من سازگار با مواد قابل حمل آب است؟

Although the application of these waterborne coatings is basically the same as with solvent borne coatings, many factors must be taken into consideration. Are my system’s components compatible with waterborne materials?

بسیاری از آلیاژها و فلزات در طول زمان در تماس با مواد آبرسان زنگ زده و خوردگی پیدا می کنند. بنابراین شما باید اطمینان حاصل کنید که تمام اجزا مانند پمپ ها، شیرها، لوله ها و خود اسپری از مواد سازگار با پوشش های آب مانند 316 فولاد ضد زنگ یا تفلون باشند.

باید تصمیم بگیریم که چگونه سیستم از ولتاژ بالا جدا شده و از طریق تامین مایعات آب منتقل می شود. آب هدایت کننده خوب برق است و تمام اجزاء که در تماس با مواد آبرسان قرار می گیرند، در ولتاژ بالا قرار می گیرند.

این شامل تمام اسپری ها، شیلنگ های عرضه مایع، پمپ، تنظیم کننده ها، دریچه ها و خود عرضه مایع است. در محیط آبکاری امروز، مواد آبرسانی باید با ایمن از هم جدا شوند.

Many alloys and metals will rust and corrode over time when coming in contact with waterborne materials; therefore, you must ensure that all components such as pumps, valves, piping and the atomizer itself are constructed of materials compatible with waterborne coatings such as 316 stainless steel or Teflon.

A decision must be made as to how the system will be isolated from high voltage grounding out back through the waterborne fluid supply. Water is a good conductor of electricity, and all components that come in contact with the waterborne material will be at high voltage.

This includes all atomizers, fluid supply hoses, pumps, regulators, valves, and the fluid supply itself. In today’s finishing environment waterborne materials must be safely isolated. This is accomplished by: (1) complete system isolation; (2) voltage blocking device;or (3) indirect charging of the coating material.

ایزوله کامل سیستم

جداسازی کامل سیستم، روش معمولی برای جداسازی ولتاژ بالا از عرضه سیال آب است. این رویکرد کم تکنیکی در دهه های گذشته بوده است

در یک سیستم جداگانه، هر گونه اجزاء که در تماس با مواد آب در تماس هستند، باید از هر گونه اتصال احتمالی جدا شوند. عرضه مایع باید در یک منطقه قفس با سطل عرضه، درام و یا پله در یک منطقه جداگانه بسته شود.

Complete System Isolation

Complete system isolation is the most commonly used method of isolating high voltage from the waterborne fluid supply. This low-tech approach has been around for decades. (See Fig. 3.) In an isolated system, any components that come in contact with the waterborne material must be kept isolated from any possible grounds. The fluid supply must been closed in a caged area with the supply bucket, drum, or tote on an isolation stand.

دروازه های این قفس باید با قفل ایمنی مجهز باشند. هنگامی که یک اپراتور دروازه ورود به قفس را باز می کند، یک میله زمین تحت فشار هوا باید ولتاژ بالا سیستم را به زمین متصل کند. این تضمین می کند که اپراتور در تماس با یک جریان آب متصل به آب قرار نخواهد گرفت

The gates to these cages must be equipped with safety interlocks. When an operator opens the gate to enter the cage, a pneumatically operated ground rod must short the systems’ high voltage to ground. This ensures that the operator will not come in contact with a charged waterborne fluid supply.

علاوه بر این، یکی از پایه های جدا کننده باید دارای مقاومت 1،050 مگاوات خون در داخل آن باشد و به زمین متصل شود تا زمانی که ولتاژ بالا ولتاژ خاموش شود ولتاژ می تواند به طور موقتی به زمین برسد.

علیرغم این واقعیت که این سیستم ها به درستی تأیید شده اند ممکن است دارای قفل ایمنی و مقاومت در برابر رطوبت باشند، هرگز فرض نکنید که تمام ولتاژ بالا تخلیه شده است. قبل از نزدیک شدن به هر یک از اجزای سیستم خیس شده  است.

همیشه یک سیم ثانویه زمین بگذارید و آن را به تمام اجزای سیستم لمس کنید تا مطمئن شوید که سیستم به طور کامل تخلیه شده است

عدم انجام چنین کاری می تواند منجر به شوک دردناک برای اپراتور شود. عدم حفظ کل سیستم به درستی از زمین جدا شده می تواند منجر به شرایط کوتاه شدن شود. این به طور بالقوه ممکن است برخی از یا همه ولتاژ بالا به زمین را کوتاه کند. این امر می تواند تا حد زیادی تاثیرات الکترواستاتیک را کاهش دهد که می تواند کارایی ضعیف انتقال را افزایش دهد. مثال:یک شلنگ تغذیه مایع، یک ظرف مایع تامین بیش از حد به زمین، می تواند سیستم را به طور کامل کوتاه کند یا یک بار بالا (خواندن میکرو آمپر بالا) را بر روی منبع تغذیه ایجاد کند که به نوبه خود ولتاژ واقعی در اپلیکاتور شما را کاهش می دهد.

این می تواند به طور قابل توجهی کاهش بازده انتقال. علاوه بر اینکه تمام تجهیزات را جدا می کند، قفس ها (منبع مایع) باید نسبتا نزدیک به تجهیزات کاربردی نگه داشته شونداین می تواند به مقدار قابل ملاحظه ای از فضای گمشده منجر شود. در بسیاری از موارد، مقدار فضای کفشی که لازم است برای تهیه مایع عرضه می شود ممکن است در دسترس نباشد. در بسیاری از تاسیسات، فضای محوطه بسیار ارزشمند است و زمانی که از دست رفته است، امکان پذیر نیست.

 In addition, one of the isolation stand’s legs should have a 1,050 megohm bleed resistor installed inside it and attached to earth ground so that when the high voltage is turned off the voltage can bleed off to ground in a timely manner.

Despite the fact that these properly confirmed waterborne systems may have safety interlocks and bleed resistors, never assume that all of the high voltage has been discharged to ground. Before approaching any of the wetted systems components, always take a secondary ground wire and touch it to all system components to make sure that the system is fully discharged. Failure to do so could result in a painful shock to the operator. Failure to keep the entire system properly isolated from ground can result in a shorting condition. This can potentially short some or all of the high voltage to ground. This can greatly reduce the electrostatic affect which can lead to poor transfer efficiency. Example: A fluid supply hose, of a fluid supply container too close to ground, can short the system out completely or create a high load (high micro amp reading) on the power supply which in turn lowers the actual voltage at your applicator.

 This can significantly reduce transfer efficiency. In addition to keeping all the equipment isolated, the cages (fluid supply) must be kept relatively close to the application equipment. This can result in a significant amount of lost floor space. In many occasions, the amount of floor space it takes to enclose the fluid supply may not be available. In many installations, floor space is extremely valuable and cannot be afforded when lost.

باردار کردن خارجی( باردار کردن غیر مستقیم مواد)

شارژ خارجی شونده های آب، باعث می شود که مایع به زمین متصل شود. منطقه می تواند همانند

External Charging (Indirect Charging of Material)

External charging of waterborne coatings allows the fluid supply to remain grounded. The fluid supply area can remain the same as it was

 را برای شارژ رنگ ایجاد می کند. مواد را با قرار دادن یک پروب، که در ولتاژ بالا، چند اینچ از الکترودهای تفنگ انجام می شود، انجام می شود.

این پروب زمینه­ی الکترواستاتیک را برای جابجایی ذرات رنگ بدون تماس مستقیم با مادی آب به وجود می آورد. بنابراین، ولتاژ بالا مسیر هدایت را از طریق خطوط مایع دنبال نمی کند.

با استفاده از اپلیکاتورهای اتوماتیک مانند یک دستگاه اسپری دوار، یک حلقه پروب (6-8) در اطراف اپلیکاتور چند اینچ به عقب و دور از زاویه چرخان قرار می گیرد. این پیکربندی اغلب به عنوان حلقه "Copes" نامیده می شود. بسیاری از کارخانه های مونتاژ خودروهای ایالات متحده به مبدل های آب در حال تغییر هستند و زنگ Copes به طور گسترده در بازار خودرو پذیرفته شده است.

با استفاده از تکنولوژی Copes، تغییر رنگ در محدوده ده ثانیه ادامه می یابد. متاسفانه، از سه روش رایج پاشش آب از طریق الکترواستاتیکی، روش شارژ خارجی یا غیر مستقیم کمترین کارایی است. بلوک های ولتاژ و سیستم های جدا شده اثبات شده است که باعث افزایش کارایی انتقال می شود

 particles without coming in direct contact with the waterborne material. Thus, the high voltage does not follow the conductive path back through the fluid lines.

With automatic applicators such a rotary atomizer, a ring of probes (6-8) is placed around the applicator a few inches back and away from the rotary bell. This configuration is often referred to as a “Copes” ring. Many U.S. automotive assembly plants have switched to waterborne basecoats and the Copes bells have become widely accepted in the automotive market. Utilizing Copes technology, color changes in the ten-second range can still be achieved.

Unfortunately, of the three common methods of spraying water bornes electrostatically, the external or indirect charging method is the least efficient. Voltage blocks and isolated systems have been proven to provide higher transfer efficiencies.

 

 آن برای پوشش بر پایه حلال تنظیم شوداز آنجایی که ذرات رنگ به صورت خارجی شارژ می شوند، یا بعضی ها می گویند "غیر مستقیم"، ولتاژ بالا از مسیر هدایت شده از طریق خطوط مایع به زمین خارج نمی شود

مواد را با قرار دادن یک پروب، که در ولتاژ بالا، چند اینچ از الکترودهای تفنگ انجام می شود، انجام می شود. این پروب زمینه ی الکترواستاتیک

 configured for a solvent based coating. Since the paint particles are charged externally, or as some say “indirect,” the high voltage does not follow the conductive path through the fluid lines back to ground. The indirect charge of the material is accomplished by placing a probe, which is at high voltage, a few inches away from the gun electrode. This probe creates the electrostatic field to charge the paint

سدهای ولتاژی

در سال های اخیر استفاده از پوشش های آب با توسعه دستگاه های ولتاژ قفل شده ساده تر شده و ایمن تر شده است.

دستگاه های مسدود کننده ولتاژ، اپلیکاتور های اسپری را از منبع مایع مایع جدا می کنند. این از ولتاژ بالا جلوگیری از مسیر هدایت شده از طریق خطوط مایع به منبع مایع زمین و اتصال کوتاه (کوتاه) از ولتاژ بالا سیستم را از بین می برد.

این دستگاه ها می توانند برای اعمال اسپری دستی و اتوماتیک استفاده شوند. در یک وضعیت تفنگ دستی، تنها یک اپلیکاتور می تواند از یک دستگاه متصل به ولتاژ واحد تغذیه شود. دستگاه های مسدود کننده ولتاژ، اپلیکاتور های اسپری را از منبع مایع مایع جدا می کنند. این از ولتاژ بالا جلوگیری از مسیر هدایت شده از طریق خطوط مایع به منبع مایع زمین و اتصال کوتاه (کوتاه) از ولتاژ بالا سیستم را از بین می برد.این دستگاه ها می توانند برای اعمال اسپری دستی و اتوماتیک استفاده شوند. در یک وضعیت تفنگ دستی، تنها یک اپلیکاتور می تواند از یک دستگاه متصل به ولتاژ واحد تغذیه شود. همانطور که از یک اپلیکاتور اتوماتیک استفاده می کنید، دستگاه ولتاژ بلوک می تواند برنامه های متعدد را تغذیه کند. این به دلیل این واقعیت است که هر و هر اپلیکاتور از طریق خطوط مایع آنها هنگام اتصال به یک دستگاه مسدود، بارگیری می شوند. دستگاه های مسدود کننده ولتاژ نیاز به قفسه ایمنی و قفل ایمنی را از بین می برند و از اپراتور در تماس با یک منبع مایع شارژ محافظت می کنند. این نیاز به مخازن انزوا و انزوا از عرضه مایع از زمین را از بین می برد. در حال حاضر عرضه مایع مایع است. این می تواند منجر به صرفه جویی قابل ملاحظه ای در فضای اتاق شود

Voltage Blocks

In recent years, the application of waterborne coatings has become simpler and safer with the development of voltage blocking devices. Voltage blocking devices isolate the spray applicators from the grounded fluid supply. This prevents the high voltage from following the conductive path through the fluid lines back to the ground fluid supply and grounding (shorting) out the system high voltage.

 These devices can be used to feed both manual and automatic spray applicators. In a handgun situation, only one applicator can be fed from a single voltage blocking device. Where as with an automatic applicator the voltage blocking device can feed multiple applications. This is due to the fact that any and all applicators will be charged back through their fluid lines when connected to one blocking device. Voltage blocking devices eliminate the need for safety cages and interlocks and protect the operator from coming in contact with a charged fluid supply. This eliminates the need for isolation stands and the isolation of the fluid supply from ground. It is now a grounded fluid supply. This can lead to a significant amount of savings in floor space.

 

خلاصه:

از سه روش مورد استفاده برای پاشش آب به الکتروستاتیکی، همه مزایا و معایب آن را دارا می باشد. کاربر نهایی باید تصمیم بگیرد که کدام روش برای برنامه کاربردی مناسب است

بلوک های ولتاژ ساده ترین هستند و می توانند با هر نوع عرضه سیال مورد استفاده قرار گیرند، اما گاهی اوقات پول نقد گویا می تواند عامل تصمیم گیرنده باشد

سیستم های جداگانه در اغلب موارد می توانند ارزان تر باشند اما همچنین می توانند فضای زیادی را در اختیار داشته باشند. سیستم های جداگانه نیز حداقل ایمن هستند و ممکن است هنگام عرضه مایع شما یک آشپزخانه رنگی از راه دور غیر عملی باشد.اگر چه شارژ غیر مستقیم ممکن است حداقل کارآمد از سه روش مورد بحث باشد، ممکن است در بعضی از برنامه ها عملی باشد. به عنوان مثال، در کارخانه های مونتاژ خودرو که در آن یک آشپزخانه رنگی درگیر است یا تغییر رنگ بسیار سریع ضروری است

بلوک های ولتاژ و سیستم های جدا شده اثبات شده است که باعث افزایش کارایی انتقال می شود

Summary

Of the three methods discussed for spraying water bornes electrostatically all have their advantages and disadvantages. The end user must decide as to which method is best suited for their application. Voltage blocks are the simplest and can be used with any type of fluid supply, but up front cash can sometimes be a factor in the mind of the decision maker. Isolated systems can be cheaper on most occasions but can also take up a lot of valuable floor space.

Isolated systems are also the least safe and may be impractical when your fluid supply is a remote paint kitchen. Although indirect charging may be the least efficient of the three methods discussed, it may be the most practical in some applications. For example, in automotive assembly plants where a large paint kitchen is involved or extremely fast color changes are necessary.

Voltage blocks and isolated systems have been proven to provide higher transfer efficiencies.

 

فرایند الکترواستاتیک برای بستر پلاستیک و سایر بسترهای غیر رسانا

نرم افزار ایده آل برای استفاده از الکترواستاتیک، فلز است زیرا تنها چیزی که باید برای الکترواستاتیک اسپری انجام شود اتصال سیم زمین به محصول است؛ با این حال، هنگامی که شما سعی می کنید به الکترواستاتیک اسپری یک ماده غیر هدایت کننده، مانند پلاستیک، آن را باید انجام رسانا. چند راه برای ساختن قسمت پوشش داده شده و یا کاربرد نرم افزار وجود دارد. شایعترین آنها عبارتند از:

ELECTROSTATIC PROCESS FOR PLASTICS

& OTHER NONCONDUCTIVE SUBSTRATES

The ideal application for the use of electrostatics is metal because the only thing that needs to be done to spray electrostatically is to connect a ground wire to the product; however, when you try to electrostatically spray a nonconductive substrate, such as plastics, it must be made conductive. There are several ways of making the part being coated or the application conductive. The most common of these being:

 

براکت فلز متخلخل را بسازید و قسمت غیر مستقیم را بین اپلیکاتور و اتصالات رسانا قرار دهید. (ذرات شارژ زمین را می بینند و به قسمت پوشش داده شده کشیده می شوند. مثال هایی برای استفاده از این تکنولوژی، پوشش پارچه ها، کاغذ یا سایر ساختارهای نازک خواهد بود.)

2. برخی از مواد با گرما هدایت می شوند. مواد مانند شیشه، محصولات لاستیکی و بعضی از پلاستیک ها ممکن است تا زمانی که رسانا و الکترواستاتیک هستند دعا می کنند در حالی که گرم

1. Build a bracket of grounded metal and place the nonconductive part between the applicator and the conductive fixture. (The charged particles will see the ground and be drawn to the part being coated. Examples for utilizing this method of technology would be the coating of fabrics, paper or other thin structures.)

 

2. Certain materials become conductive with heat. Materials such as glass, rubber products, and some plastics may be heated until they are conductive and electrostaticallys prayed while warm.

3.  تمام غیرضروری ها مانند چوب، لاستیک، پلاستیک و شیشه نیز ممکن است با حساسیت های شیمیایی درمان شوند. این ها به طور کلی مواد شیمیایی هیدروسیکولی هستند که باعث ایجاد رطوبت روی سطح محصول می شوند. کنسانتره های کنترل کننده حساس کننده ممکن است با غوطه ور شدن، پاک کردن، پاشش یا یک اتاق غبار استفاده شوند. پس از درمان، این قسمت هنگامی که در معرض رطوبت کافی مانند یک رطوبت هوا یا رطوبت هوا (70٪ رطوبت نسبی) قرار می گیرد، هدایت می شود. حساس کننده ها مایعات غیر تشکیل دهنده فیلم هستند.

3. All nonconductors, such as wood, rubber, plastic and glass, may also be treated with chemical sensitizers. These are generally hydroscopic chemicals that attract moisture onto the surface of the product to create conductivity. Controlled concentrates of the sensitizer may be applied by dipping, wiping, spraying or a mist chamber. After treatment, the part becomes conductive when exposed to adequate humidity such as a humidity chamber or high ambient humidity (70% relative humidity). Sensitizers are non-film-forming liquids.

 

4.  یکی دیگر از روش های ساخت اجزای رسانا، استفاده از پرایمر رسانا است. پرایمر رسانا را می توان به وسیله ی معمولی به سوبستمال اعمال کرد، در نتیجه اجازه می دهد پوشش کت به صورت الکترواستاتیکی اعمال شود. آغازگرهای هدایت کننده ممکن است اسپری شوند، پوسته پوسته شده، پوشش داده شده و یا قالب بندی شوند. دلیل استفاده از اجزای غیر اجزای قابل قبول برای بار الکترواستاتیک، استفاده از کارآمد ترین فرایند با بالاترین کیفیت با حداقل هزینه ترین است. با استفاده از فرآیند الکترواستاتیک، هر یک از این مزایا را به دست خواهید آورد.

4. Another method of making the part conductive is by using a conductive primer. The conductive primer can be applied to the substrate by conventional means, thus allowing the top coat to be applied electrostatically. Conductive primers may be sprayed, dip coated, flow coated, or molded in. The reason for making nonconductive parts more acceptable to an electrostatic charge is to utilize the most efficient process with the highest quality finish at the most minimal cost. By utilizing the electrostatic process, you will achieve each of these benefits. slightly increasing transfer efficiency

کاهش تولید ترکیبات الی فرار

ناحیه­ی ذخیره دیگر کاهش انتشار است. با توجه به مقررات فدرال و محلی که روز به روز تشدید می شوند، انتشار گازهای گلخانه ای (VOC) به یک مسئله مهم تبدیل شده است. ما دائما در حال تلاش هستیم تا میزان  VOC ها در جو را کاهش دهیم. با افزایش بهره وری انتقال، انتشار VOC کاهش می یابد. (نگاه کنید به شکل 8). این نتیجه حاصل از اعمال رنگ بیشتر و رسوب رنگ کمتر به داخل فیلترهای غرفه یا اتمسفر است.

VOC Reduction

Another savings area is emission reduction. With federal and local regulations becoming tougher by the day, VOC (volatile organic compound) emissions has become a major issue. We are constantly trying o reduce the a mount of VOCs emitted into the atmosphere. By increasing transfer efficiency you lower VOC emission. (See Fig. 8.) This is a result of more paint being applied on the part and less paint being deposited into the booth filters or atmosphere

 

تهیه شده در واحد تحقیق جلاپردازان پرشیا

تیر 97

 

English -شش راه برای بهبود سند بلاست وشات بلاست قطعات

cleaning, pretreatment & surface preparation

SIX WAYS TO BETTER BLASTING

 

BY MARK HANNA, DAWSON-MACDONALD COMPANY, WILMINGTON, MASS.

If your shop regularly uses blast prep, our tips can make your blasting operationclean, effective, and profitable.

1. REDUCE BLASTING COSTS

Here’s a paradox no one wants to hear: Maybe, just maybe, your blasting is costinga lot because you’ve invested too little money (or attention).It’s easy to focus on initial capital costs. But don’t overlook operational costs,which can add up quickly. Have a payback timeline in mind, and add your capitalcosts to projected operational costs over that time horizon – and you mayfind that a little more investment in equipment can make your operation muchmore profitable.So, exactly what are the costs to factor in?

 Reduce labor costs

Many owners would guess that material or compressed air cost the most. However,in most situations it is labor. So do what is needed to cut down on labor. This canbe as simple as investing in an “abrasive upgrade,” a stationary gun holder, a differenttype of blast gun, or pre-packaged system conversion. But where warranted,a whole new system – perhaps including automation – may also be in order.Paying a worker to blast six or eight hours a day – when the same work couldbe accomplished in a fraction of that time – is wasteful. In addition, fewer hoursspent blasting will reduce overall consumption of compressed air energy, andmedia, and save wear and tear.

Understand media

How did you select the media you are using? For some, it’s easy: it is in the spec.For others, it’s what they’ve always used. Many people buy media by how muchit costs per pound – or bag. That can be a mistake.Today, there are dozens of media (type & size), and many are excellent. Theone that will give you the best results the fastest – and hold up the longest – willalso be the cheapest to use, regardless of the initial cost. Select the right mediafor the job, and your major – sometimes hidden – costs will diminish, becauseyou’re blasting fast and clean.On the other hand, “cheap media” is often slow and dusty, reducing visibility(which increases rework). Inconsistent blast quality and a poor and possiblyunhealthy working environment become factors. Add in extra needed maintenance,freight and disposal costs, and saving cents on media makes no sense atall. (See section: “How to Select Blast Media” at the end of this article.)

Optimize your compressed air

Loss of production, rework and downtime are all costly – and you may not beaware there’s a problem lurking in your compressed air supply.Compressed air for blast systems must be oil-free and “clean and dry” and thatusually means a refrigerated air dryer. Moist air is the source of many blastingills, especially in high humidity when water condenses easily, contaminatingmedia and causing flash rusting. “Economizing” on the pipe diameter to theblast machine and adding other restrictions such as quick disconnect fittingscan reduce performance.Air compressors have improved significantly. Consult with your supplier: acompressed air audit may reveal potential savings.

Use the correct blast nozzles

The right blast nozzle can greatly increase the utility of your machine, and todaythere are many that offer gains in production. New ergonomic blast guns formanual cabinets are much easier to use1. Fan nozzles provide wide spray. Airinductionnozzles eliminate the blasting “hot spot” that can otherwise warpdelicate parts and make for slow, streaky blasting. A variety of side-outlet nozzlesreach into or behind difficult-to-access areas. Extra long venturi nozzles havebeen developed to increase production up to 40% over conventional nozzles whenusing the same amountof compressed air.In terms of compressedair consumption,it can be verycostly to leave a wornnozzle in place. Be sureto use a durable, highperformance nozzle –cheap disposables needfrequent replacement,can lead to prematureblast hose replacement,tax your compressor,and drive up labor andenergy costs.Extra labor costs canbe incurred by not usinga large enough nozzle inthe first place2 – re-evaluateand realign yourCFM consumption toFigure 1. Simply upgrading to a blast gun designed for productivity your throughput needs.

2. ACHIEVE CONSISTENT QUALITY

Blasting is a recipe with many ingredients and techniques, so get to know whataffects the speed and quality of your individual application.

Reclaim your media

To economize, virtually all industrial systems reuse blast media several timesover. But media breaks down as it impacts hard surfaces. In dry blasting, debrisfrom the surface of the workpiece becomes pulverized dust. Dust and brokenmedia must be removed, or the process degrades rapidly4. This requires a dustcollector. On cheaper systems only a fraction of the ambient dust Ð nearest theblast cabinetÕs vent Ð is sucked out. ThatÕs not good enough.To maximize the extraction of dust and undesirable fines from the workingmedia, several kinds of air wash or cyclonic separators are employed in conjunction Media Make-UpAs you’d imagine on a bell curve, grit size will skew towards fi neness over time due to theconstant breaking down of the impacted media. The “seasoned abrasive” will be doingthe work for you, patterning the surface with the texture of that “working mix.” For thatreason, some operations charge the machine with a fi ner media and feed the make-upwith coarser stock to draw the bell curve back into the intended range. Automated systemscan be incorporated to constantly trickle in fresh media to “make-up” for the wornabrasive that’s been pulled out of the working mix by the reclaimer – and these “automaticmake-up systems” quickly pay for themselves. That’s because, optimally, you should neverhave to empty the entire load of media for a fresh recharge. Surface quality will remainconsistent, too. You can mimic the make-up system on simpler blast cabinets by emptyingthe dust collector and adding the poundage of dust taken away in fresh, new media – infrequent, small increments.

With wet slurry blasting, blast media can retain its shape and size for longperiods of time. One manufacturer of engines has processed more than 2 millionsmall parts while consuming very little ceramic bead.

Select the right pressure and angle

What blast pressure should you use? Depends.With one-pass (disposable) media on durable parts you may wish to go all out

and blast at the highest pressure6 in order to save labor costs.But you may find that blasting at 90 PSI gains little over blasting at 60 PSI.

Blasting at the lower pressure will increase the service life of the equipment andyour recycled media, keep the media’s “working mix” bell curve centered, andsave compressed air. Lower pressure blasting is also more forgiving and gentleron the parts. Experiment within the bounds of the blast specification.Higher operating pressures can cause rougher surface profiles. Excessive pressureis one of many reasons for “embedment” of abrasive shards, which mightlead to coating failure. Embedment can also occur if the media is too friable, or

if the wrong blasting method is used.What difference does it make if you blast at 90-degrees to the surface orsome other angle? First, it changes the finish. You “dig” blasting straight onand “scuff ” blasting at a low angle, and that affects finish. So keep a consistent

angle when possible. In addition, you may find that low angle blasting is fasterat removing a coating, since media plows beneath it to lift it off. When blastingat 90-degrees, incoming media is battling media rebounding off of the surface.Those collisions slow blasting rates and fracture media unnecessarily – leadingto lower production, higher costs, high dust levels, and inconsistent finishes.

3. CLEAN UP! BLASTING AND “LEAN PROCESS” CAN BE COMPATIBLE

No process can be considered “lean” when a part leaves the work cell, or worse,the factory, for blast processing. The extra handling and time lost in transportand waiting for parts adds unnecessary cost and complexity. With today’s plating,painting, and adhesives, many specs do not allow parts to sit around for more thanfour hours, and some instruct you to plate within 30 minutes of blasting. You maynot achieve that reliably with a blast lab in a remote part of the facility or off site.There are no two ways about it, blasting can be messy – that’s the traditionalreason for it being relegated to a distant room. But there are many very cleanblasting operations, and yours can be, too. Today, we can put modern blastequipment inside some work-cells – which was unthinkable in the past.Cabinets have evolved, dust collection can be fortified, and new techniquesimplemented. Eliminating dust through smart equipment and media selectionshould be a priority.A work cell machine can be compact and simple. For example, a poweredspindle that rotates your part allows blasting to proceed while your operatorattends to other tasks in the cell.Wet slurry blast7 machinery combining wash – blast – rinse in a single step.That is lean. And because these machines are inherently cleaner, they can fitinto the process cell, so queuing,steps, and lost time areeliminated.On other systems, mediacatch trays, some of which areself-cleaning, can be added, aswell as features and controlsthat keep dust emissions atbay. Vertical sliding doors anddoors with delay-timer lockshelp keep things compact andclean.Scrap a poorly performingor undersized9 dust collectorand upgrade to a self-cleaningcartridge model with “surfaceloading10”filters. Considerequipping it with a pulse-cleaningcontroller11 with monitoringgauge, after-filters (HEPA)and a variable frequency drivewith airflow controller12. It should have a sealed waste drum. Everypart of thesystem should be under negative pressure; some blowers pressurize their dustcollector, and a small leak there will make a big mess everywhere.

4. BLAST THROUGH THE BOTTLENECK

What’s slowing you down? Is it your material handling, the blast machine, a poorselection of process variables, or something harder to pin down?

Handle it

Whether you’re cleaning large engine housings in a walk-in room or deburringtiny injector nozzles, material handling is critical. And there is a wide variety oftools available that facilitate processing your part’s properties and batch sizesin your working environment. Some of these include:

• Robotics

• Turntables: continuously powered, indexing (satellite) and spinnerhanger

• “Lazy Susan” turntables – stationary, with dolly, or powered in-and-out

• Crane slots in the roofFigure 3. A work cell machine where a robot does the blasting.This wet slurry blast machine8 is compact and clean.

• Inline: belt or rollerconveyor, pinch belt, traintracks.

• Tumbelt, batch and basketblasters.

• Lathe-style, eitherenclosed in a cabinet, oropen with a vacuum-blastwork-head.

• Custom modifications tobetter match the cabinetto the part or process,such as tilting turntables,feed-through iris orifice,etc.

Blast efficiently

Sometimes you just need a blastcabinet on steroids, and that callsfor direct-pressure blasting, wheelblasting, or any one of severaldynamic approaches to blast prep(equipment, media, training, etc.).Each has limitations to consider,but for covering a lot of toughground efficiently, they save laborlike no other. For instance, thosewho upgrade to direct-pressureoften find a day’s worth of blasting done by morning break. It might be time toaudit your operations, call in your blasting expert and re-evaluate, using theirlocal test lab.

Less can be more

A New England machine shop blasted a forged part several times during its routing, andthey had picked up a well worn multi-gun automatic blast cabinet as well as two inexpensiveblast cabinets for the task. But blasting was still taking too much time. Although theywere using an appropriate media, the equipment was inadequate. All of these machineswere replaced with a new, centrally-located direct-pressure blast cabinet and a single,well-trained operator. Floor space was reclaimed and the hours spent blasting reducedsignifi cantly. Maintaining one machine that was wear-protected from the start becameeasy to manage.

Automate it

In air blast and wet blast systems, automation often means moving multiplenozzles along the profile of the part, maintaining the optimal stand-off distanceand angle of incidence. Nozzles may be fixed – to blast moving parts, attached tolinear oscillator or robotic arm, or arrayed in “whirlybird” fashion.When you eliminate bottlenecks, you may find yourself with lot of extracapacity. That could leave you seeking additional, profitable blasting work.

Figure 4. A simple automated blast machine for IDand OD blasting on a wide range of part sizes keepsthis job shop blasting in the fast lane. Machine has

multiple vertically oscillating guns and PLC controls. Acrane slot with powered turntable facilitates materialhandling. It is shown set up for ID blasting on a jetengine burner can13.

5. FIND A WAY

Everyone has their own idea of what blasting is.There is suction, direct-pressure, wheel and wetslurry. Manual cabinets, suit-up/walk-in blastrooms, and automation of every description.And more.Bicarb blasting, dry ice blasting, vacuum blasting,laser coating removal all have their place.Keep in mind that no tool does it all, and someare much better at a particular process thananother.Today there aremorechoices than ever, andit will pay to work with your local supplier tomake sure you have the advantages of moderntechniques. Ask for a test toprove the processbefore making a commitment.Investigate the properties of different blastmedia, such as:

• Particle shape

• Hardness & density

• Grit size

• Durability

You may find, with testing, that you can strip paint off of glass withoutetching, eliminate masking, use less topcoat, etc. A good supplier can help youdetermine the best choice.Accessing hard-to-reach recessed areas on the workpiece can make blastingfrustrating or impossible. Direct-pressure systems are especially useful for blastinginside tubes and odd shapes; specialized nozzles make this possible. Anddirect-pressure is effective at some distance, so you can effectively blast an areafar from the nozzle.Using a cabinet that is too small will restrict you from moving the end of apart in front of the operator. Custom features can be built into professional-gradeblast cabinets to fit the machine to the part or process, as mentioned earlier.

6. SEND YOUR BLAST MACHINE TO REFORM SCHOOL

Blasting with abrasives can be tough on the equipment, but that does not meanconsumables and maintenance will be an ongoing problem. The solution is toequip your machinery with appropriate wear protection from the start. Thatincludes heavy-duty hoses, protective linings, rubber curtains, and long-lifenozzles. Invest in these and your costs will decrease. YouÕll spend more timeproducing and less time fixing.

Larger blast cabinets last longer, too, because the abrasive is not going inÒhotÓ on the cabinet wall, having had time to dissipate its energy.Automated systems often have a run-time meter to keep track of actualblasting hours. Utilize it to keep a log and anticipate Ð not react to Ð your maintenanceneeds.Preventive maintenance beats fixing. Set up a schedule. Refer to manufacturerÕsmanuals, and consider farming out PM to experts on a regular, scheduledbasis, perhaps spring and fall.

 HOW TO SELECT BLAST MEDIA

Step one in your goal of a cleaner, more effective, and profitable blast prep isselecting the best blast media for the job. As noted earlier in this article, ÒThemedia that will give you the best results the fastest Ð and hold up the longest Ðwill also be the cheapest to use, regardless of the initial cost.Ó

Variety: With so much to choose from, different blasting media can handle any blast prep requirement.

Various factors go into selecting the most appropriate media, including:

Particle shape:

Round media peen and sharp media etch. Think Òball-peenhammerÓ and ÒchiselÓ (on a micro, but broad, scale). The medium imparts itsreverse image onto the substrate. For brittle coatings or removing light, burrs,etc., a round media will probably work best by ÒflexingÓ the coating loose, andit will leave the smoothest finish. To aggressively ÒcutÓ the surface and leave aprofile of Òpeaks and valleysÓ a hard, sharp or blocky media will do best. A soft,blocky media can strip without etching.

Hardness:

Relative to the substrate and coating, pick an appropriate mediahardness, which ranges from almost 1.0 (the rating for talc) to nearly 10.0 (therating for diamond, on the logarithmic moh scale).

Optimizing grit hardness

An example of thoughtful hardness selection comes from blasting a fry pan made froman aluminum bottom fused to a stainless sidewall: A melamine plastic media at 4.0 willprofi le the softer aluminum so that Tefl on® will anchor to it, all the while not etching theharder stainless portion of the pan. No masking required: how is that for “lean” manufacturing!

Grit size:

Often a too-coarse abrasive is selected, under the theory that largermedia will last longer in the system and therefore cost less. However, a finermedium often does the job faster, whereas coarse media will not only take longer,but also require copious amount of primer to cover the rough peaks andvalleys it leaves behind.The reason finer media often works faster is that, for instance, a fine #10glass bead (100-170 mesh) has over 300 million particles per pound compared toa coarser #5 glass bead (40-50 mesh) at “only” 7.9 million beads per pound. So,you see, many more particles hit every square inch every second.Fine media won’t work all the time. In circumstances when you need to“power through” a tough coating or severely rusted surface, the momentum ofa coarse, dense media particle is the only way to “cut it.”Also, medical implants such as titanium knees may require a very coarse profile

for the human body’s bones to “knit” onto successfully. So every applicationrequires a thoughtful analysis of grit size needs.And, of course, your blasting spec may dictate your mesh size.

Density:

A denser media will carry more of its kinetic energy onto the surface for morepower when needed. You can actually save some energy by lowering the PSIwhen upgrading to a denser media. And, you can safely work on many delicate

substrates with low pressure, and soft, low density media such as plastic, walnut,corn cob or bicarb.

Durability – Friability:

A friable medium is more likely to fall apart upon impact. This can be a problemor you can use it to your benefit, depending upon your aim. Dry ice blasting ispopular for specific applications, and it takes friability to an extreme – it literallyexplodes upon contact with the surface, with the expanding volumetric energygetting underneath and lifting lightly adhered contaminants, such as hot plasticdeposits inside injection mold cavities – as the media transitions to gas. (Thermalshock of CO2 at -107 degrees F against a hot residue also helps in these cases.)Generally, durable media is the best choice. And media that keeps its shapegives the most consistent blasting results and quality finishes over time. Ceramicbead and cut wire are fine examples of high-yield blasting media.

Cost:

Your selection of media directly affects blasting cost. Remember, the best mediais fastest and cleanest, and you’ll have your priorities right – and be on the roadto more profitable blasting.

Divergent needs:

There’s no two ways about it. Those shops that need to produce a variety offinishes will have to keep several kinds of media on hand. If production or scalewarrants, you may find that you dedicate one machine to aluminum oxide, oneto glass bead, etc.

Seek expertise:

Buying media from a distant catalog source that offers no expertise is no way topurchase media. Seek out your local blasting supply house for expertise. And usetheir local test lab, which should be well stocked with modern blast equipmentand a variety of different media.

CONCLUSION

Abrasive blasting can be a cleaner, faster, lower maintenance-intensive process.Labor costs dearly, so reduce it through thoughtful selection of equipment andmedia. Rely on local outside sources for expertise. Determine if you want tospend a little extra up front to gain the benefits that better equipment, media,and product support offers: higher quality, higher yield, and an improved workenvironment.

REFERENCES

1. By ditching the old trigger blast gun and upgrading instead to a moreeffective gun with a foot treadle, you’ll blast faster and lessen the chance ofworkman’s compensation squeezing that trigger for hours on end has leadto claims for carpal tunnel, tennis elbow, etc.

2. Changing nozzle size may necessitate other system changes. Consult yoursupplier.

3. Photo of ergonomic blast gun courtesy of Kennametal Abrasive FlowProducts.

4. Dust is erosive, prevents free-flow of media, clogs filters, slows blasting, andin manual operations, reduces visibility – which is important to speed andquality results, without costly rework.

5. Photo by the author.

6. Most pressure vessels are rated for 125 PSI; some newer ones for 150 PSI.

7. Older designs of wet slurry blasting machines did not have the advantages oftoday’s models. Be sure the one you select is designed for easy maintenance,durability, and clean operation – and is constructed with all-stainless steel(or roto-molded plastics when lower production economics are required). Aglandless vortex pump will beat an older design in performance, and be surethe pump is rebuild-able, without tools, in minutes. This is one case whereyou get what you pay for, and good engineering counts.

8. Photo provided courtesy Wet Technologies, Inc.

9. Sizing the dust collector involves determining the total air flow (CFM)required, friction factors through the system (including ductwork), the airto-filter ratio (CFM: FT2) appropriate for the particular contaminant, anda variety of other factors. Therefore, adapting surplus collectors to blastingprocesses should only be done after a complete evaluation. (That wouldalso include the risk of inheriting potentially hazardous dust shipped inwith a used collector). The blaster’s dust collector should be sized not justto overcome the incoming amount of compressed air, but also create severalair changes, up to 10 or more per minute, depending upon the cabinet size.

The blower that powers the dust collector must be matched in air flow ratewith its reclaimer.

10. UltraWeb® by Donaldson-Torit is the originator, and many consider thebest. This style filter prevents submicron particles from bypassing or prematurelyclogging the filter media, amongst other benefits.

11. Wild changes in filter loading caused by inattention to the basic operationaltask of filter purging will lead to fluctuations in the operating conditions,and that can affect quality, cost, and add to the dust burden. For this reason,automating the cleaning cycle, using a narrow on/off band, is recommended.

12. A VFD, when tied in with an airflow controller, keeps air flow consistent,increases the service life of the filters, saves electricity, and ensures that yourcritical reclaimer system stays “in tune.”

13. Photo by the author.

14. Photo of micro-blast courtesy of Vaniman Manufacturing.


ABOUT THE AUTHOR

Mark Hanna has been designing, troubleshooting, andapplying blast prep systems for over 30 years, He workedfor Empire Abrasive Equipment in engineering, productdevelopment and management, and established Empire’ssuccessful Custom Cabinets department. In 1993 he joinedDawson-Macdonald, and since then has been improvingblasting operations of all descriptions for his customers in

Massachusetts, NH, VT and Upstate NY.He welcomes your questions and comments.Personal website / blog: www.blastprep.com

Company website: www.dawson-macdonald.comEmail: mhanna@dawson-macdonald.comConnect with Mark Hanna on LinkedIn at http://lnkd.in/4-amf6

© 2013 Mark Hanna

english-تجهیزات پرداختکاری در آبکاری

cleaning, pretreatment & surface preparation

BUFFING WHEELS AND EQUIPMENT

BY DAVID J. SAX

STAN SAX CORP., DETROIT; WWW.STANSAXCORP.COM

Three elements to a successful buffing operation are the buff wheel, the buffingcompound, and the buffing machine. It is necessary to understand all of these elementsand how they interact to achieve desired quality, productivity, cleanability,corrosion resistance, reject elimination, and overall cost-effectiveness.

WHAT IS BUFFING?

Buffing is a mechanical technique used to bring a workpiece to final finish. Italso can be used to prepare the surface of a machined, extruded, or die-cast partfor plating, painting, or other surface treatment. The objective is to generate asmooth surface, free of lines and other surface defects.Buffing is not a process for removing a lot of metal. Deep lines and othermore severe surface defects should be removed before buffing by polishing witha polishing wheel or abrasive belt.Buffing usually involves one, two, or three steps: cut buffing, intermediatecut, and color buffing. These operations normally are performed by what isreferred to as either “area” buffing or “mush” buffing.

Cut Buffing

A harder buff wheel and, generally, a more abrasive buffing compound, are usedto start the buffing process. In cut buffing, the buff wheel and workpiece areusually rotated in opposite directions to remove polishing lines, forming marks,scratches, and other flaws.

Color Buffing

When a mirror finish is specified, a color buff step may be required. Colorbuffing may be performed with a softer buff wheel and less aggressive abrasivecompounds. In color buffing, the buff wheel and workpiece are usually rotatedin the same direction. This enhances the cut buff surface and brings out themaximum luster of the product.

Area Buffing

For localized finishing, narrow buffing wheels, positioned tangentially to theworkpiece, are used. This is often is referred to as “area buffing.”

Mush Buffing

To finish larger parts or parts having several surface elevations, mush buffingmay be used. This involves the use of one or more wide buff wheels. In mushbuffing, a part is rotated or cammed through the buffing wheel. This techniqueis also used to finish multiple products simultaneously.

BUFFING COMPOUNDS

Buffing compounds are the abrasive agents that remove minor surface defectsduring the buffing phase of the finishing cycle. Buffing compounds are availablein paste or solid form. There are thousands of products from which to choose.The prime consideration in selecting a buffing compound is the substrate beingbuffed and the surface to be provided.Nonferrous products made of copper, nickel, chromium, zinc, brass, aluminum,etc., frequently are buffed with compounds containing silica (generallyamorphous, often “tripoli”). “Tripoli” is found in a small area of Oklahoma andis shipped all over the world. Steel products are normally buffed with compoundsof fused aluminum oxide, which is available in DCF collector fines and as gradedaluminum oxide in a range of grit designations.Special abrasives are available for other purposes. For example, chromium oxideis widely used to give stainless steel, chromium- and nickel-plated products highreflectivity. Iron oxides are used to color buff gold, silver, copper, and brass. Limebasedbuffing compounds are used to generate mirror finishes on nickel products.Skilled buffing engineers can help manufacturers select the optimum equipment,buffing compounds, wheels, and buffing techniques. Cleaners and cleaningprocesses must be matched to the soil to be removed.

BUFFING WHEELS

Fabrics used in buffing are designated by thread count and fabric weight. Countis measured by threads per inch; weight by the number of linear yards per poundof 40-inch-wide fabric. Heavier materials have fewer yards per pound. Lowerthread count and lighter weight materials are used for softer metals, plastics,and final luster. More closely woven, heavier, and stiffer materials are used onharder metals for greater cut and surface defect removal. Stiffness is a result ofheavier weight, higher thread count fabrics, more material, specialized treatments,

sewing, and overall buff design.Buff wheel construction determines the action of the buff by making itharder or softer, usually by varying convolutions of the face of the wheel. Thisinfluences aggressiveness. Part configuration dictates buff design, construction,thread count, etc.

Conventional buffs employ a circular disk of cloth cut from sheeting andsewn into a number of plies. For example, some materials require from 18 to 20plies to make a -in.-thick section. Multiple sections are assembled on a spindleto build the required face width. The density of these types of buffs is alsocontrolled by spacers that separate the plies of fabric or adjacent faces fromone another.

Industry standards for the inside diameter of airway-type buff wheels are3, 5, 7, and 9 in. As a rule, productivity and buff wheel life increase as outsidediameter increases and thread count and material content increases. Largerbuffs and higher shaft rotation speeds also increase productivity and buff life.The choice of buff center size depends on how far the buff material can beworn before the surface speed reduces to a point of inefficiency, or flexibilitydeclines to a point where contours cannot be followed. Airway buff flexibilitydecreases with use as wear progresses closer to the steel center. Most airway buffsare designed with as much material at the inside diameter as the outside diameter.

Flanges

Buffing wheels require flanges for safe operation. Flanges must be sized for thespecific inside diameter of each buffing wheel. It is important for all buffs that theflange be designed with sufficient strength to withstand the tremendous forcesand pressures exerted in buffing. If buffs are not well designed and fabricated,centrifugal forces at higher speeds and the shock from operations can cause failureof clinching teeth, breakage of rings, and breakdown of buff sections. MUSLIN BUFFSThe most commonly used fabrics for buffs are cotton muslins. As previouslynoted, fabrics are designated by thread count (e.g., 60/60, 80/80, 86/80). Thesedesignations refer to the threads per inch in the warp and fill, respectively. Fabricweights typically run from 2.5 to 3.5 yd/lb. (Table I).

OTHER BUFF MATERIALS

Flannels

Domet flannel (with nap on both sides) and Canton flannel (nap on one sideand twill on the other side) in various weights are used where other fabrics fail toproduce a high enough luster. Coloring of jewelry products is a typical applicationfor such buff materials.

SisalSisal is a natural hemp fiber used for fast-cut buffing of steel and stainless steel. Itis a coarse fiber twisted into strand groups and frequently woven into a fabric. Ithas a much lower thread count than cotton muslin, sometimes five by seven perinch, and offers the advantages of greater surface defect removal. Combination

sisal/cloth buffs are effective designs (Fig. 1). The sisal plies frequently are clothcovered to omit the tendency of the sisal to cut the cotton threads of adjacent clothplies. Alternating cloth and sisal improves compound retention, reduces unravelling,and moderates cut. Kraft paper alternated with sisal also has applications.

Other Natural Materials

Occasionally, other materials are used to form buffs. For example, woven woolbuffs are used on plastics, soft metals, and sterling silver. Sheepskin buffs areused to avoid surface drag or smear when buffing metals that contain lead.Russet (bark-tanned) sheepskin is used for cut. White alum (alum-tanned)sheepskin is used for color buffing.

Pieced Buffs

Pieced buffs are less expensive because they are made of lower-cost materials.The buffs are made of colored segments, unbleached segments and occasionallybleached material.

Combination Buffs

Often different materials are combined, especially sisal with cloth, and occasionallypaper as well as cloths of different specifications.

Synthetic Fibers

Unwoven nylon and other synthetics fibers, because of their water resistance, may be used wet or dry or with wax or grease lubricants. Buffs made of syntheticsare usually operated at slow speeds, typically 2,500 sfpm, to prevent meltingand streaking surfaces.

BUFF TREATMENTS

Treatments may be applied to fabrics (mill treatment) or to the buff after assembly(dip treatment). Buff fabrics are frequently hardened and stiffened to promotefaster cutting, softened for additional flexibility to conform to contours,strengthened for longer buff life, or lubricated to prevent burning. Buff fabricsmay also be treated to provide improved adhesion of buffing compound, toabrade for heavier cut, or to flameproof and make fire resistant. Treatmentsmust be applied evenly and uniformly to avoid creating hard spots that causeuneven buffing. The treatment must not deteriorate with buff age. Unsuccessfultreatments weaken the cloth and decrease buff life.

CONVENTIONAL, FULL-DISK BUFF DESIGNS

Unsewn Buffs

Conventional, full-disk buffs are made with die-cut cloth disks. Unsewn, conven-tional full-disk buffs may be used forluster (Fig. 2). Loose disks are turnedto allow the threads of the material tolie in different directions. This resultsin more even wear, avoiding a squareshape after being put into use. Onedisadvantage of this conventionaldesign is that the fabric can fray orravel. When held against a wheel rake,a cloud of threads may fly off. Thisshortens buff life, increases compoundconsumption, and adverselyaffects finish. Also available are solidbias sisal buffs, with every other layerbeing cloth, and rebuilt buffs madefrom reclaimed material.

CONVENTIONAL SEWN BUFFS

Conventional, full-disk buffs for heavier buffing (cut) are sewn in various ways(Fig. 3). Closer sewing is specified for cutting harder metals and for removingdeep imperfections.Concentric sewing causes a buff section to become harder as it wears closerto the sewing and softer after wear causes the sewing to break through. Spiralsewing results in more uniform density. Square sewing produces pockets thathelp the buff wheel to retain more buffing compound. Radial sewing, sometimescalled sunray sewing, and radial arc sewing provide other variations. Tangent,parallel, ripple, zigzag, cantilever, and petal sewing are used for similar reasons.Special sewing, other than spiral, which is done on automatic machines, involves

Folded or Pleated Buffs

Folded buffs consist of circles of cloth folded twice to form a quarter circle,resulting in a “regular-pocket” buff (18 ply), or, for more cut, three times, toform eighths of a circle to constitute a denser “superpocket” (34 ply). The segmentsare laid down to form a circle, with eachsegment overlapping the previoussegment. They are sewn around the arbor hole and partway to the periphery.The folds form pockets that hold compound and flex sufficiently for contourfollowingcapacity. Folded buffs share three design deficiencies: lack of centerventilation, a tendency to fray, and waste of material in the unused center.

Pleated Buff

Airway buff cloth may be accordion pleated to present more angles of materialto the surface of the product to be finished. Pleating results in more cloth anglesto reduce streaking and improve coloring characteristics. Better cutting is alsoachieved in some applications.

Packed Buffs

Buffs may be packed with spacers consisting of cloth or paper inserted betweenthe larger diameter plies. The same spacer principle is used between buff sections.Both measures result in a softer wheel face. The packed buff constructionis effective in contour buffing applications.A version of the packed buff, for threaded, tapered spindles (2-12-in. diameter),is used in the jewelry industry. The center is hardened, usually with shellac.The sides of the buff may be reinforced by leather disks.

Pieced Buffs

Pieced buffs may be used in place of sewn full-disk buffs. They are made fromremnants of cloth left over in the manufacture of other textile products. Suchbuffs require one of the types of sewing used for full disks in order to staytogether in use. The chief virtue of pieced buffs is their higher value owing tothe lower cost of materials. They usually are sold by the pound (see Table II).

BIAS-TYPE BUFF WHEELS

Bias buffs are more frequently used than conventional forms. They combineflexibility and cutting power. Bias buffs are cool running and resist burning.They are naturally ventilated. Side openings in flanges, center plates, and tabs,resulting in spacing between sections, enhance their cool-running characteristics.By using material cut on the bias, the threads form an “X” at the peripheryof the buff. Threads are held at a 45o angle by cross-threads. This minimizesfraying and raveling (Fig. 4).Strips of bias-cut fabric are sewn into continuous rolls. After the rolls arecut to proper length, they are wrapped around a hub or core. They are thenpulled to the desired inside diameter within the channel, usually by means ofsteel blades in an “Iris” machine. Straight-wound material wrapped aroundan oversized wheel results in a convoluted or “puckered” face; thus, the term“puckered” buff.The “puckered” face design of bias buffs tends to break up lines left in thesurface of a product from previous operations. Increasing the size of the drumsvaries the amount of pucker in the face. The bias buff can be adapted to various

contoured parts and degrees of cutting and coloring. An advantage of the “Iris”-made buff is the elimination of material beyond the inside diameter to the arborhole. Thus, more of the cloth is available for use. VENTILATED BIAS BUFFSAlthough the puckered characteristic of bias buffs results in cooler running,some operating conditions require additional cooling. Steel centers with holesand ridges are designed to collect and divert more air. The air cools the buffand the workpiece surface. Clinch rings permit use of reusable metal inserts for

substantial savings (Fig. 5).

PUCKERED BUFFS

Puckered buffs are rated by numbers. Higher numbers indicate greater clothcontent, buff density, and face convolutions (Fig. 6). Higher densities and closerconvolutions increase cutting and reduce streaking.

Open-Face Cloth Buffs

The open-face buff prevents loading, packing, clogging, and ridging duringfinishing operations. The plies are configured differently from the closedfacedesign. Buff material is wound singly or in groups of two, three, four, ormore plies. Open-face buffs may be “straight wound” or “spiral wound” for acorkscrew or cross-cutting action that further minimizes streaking. Buff densityvaries with the number of plies, the amount of cloth, thread count, fabricweight, and treatment of the cloth. Buff pressure, speed, angle to the part, clothstrength, compound absorption ability, ventilation, and cloth flexibility arevaried with buff design.Table II. Approximate Weight Table for Spiral Sewed Pieced Buffs

BIAS SISAL BUFFS

“Iris” equipment used to gather cloth buffs is adapted to sisal and other materials(Figs. 7-10). Some bias sisal buffs are tapered (wider at the outside thanthe inside diameter). This reduces gaps between hard sections that could causestreaking. The tapered bias sisal buff is a long-life, cool-running buff for steeland stainless steel. Hard bias sisal buffs also are used in place of some beltingoperations, as well as in deburring and brushing.

Open-Cloth Bias Sisal Buff

The open cloth bias sisal (OCBS) buff is used on contoured steel and stainlesssteel parts (Fig. 9). It consists of woven sisal and cloth, four plies of each(eight plies total), bound together by concentric sewing before Iris gathering.The buff is manufactured in endless strips, cut to length, rolled aroundsplit drums, and gathered into clinchrings by the “Iris” machine. A variationof the open-cloth bias sisal buff is theopen double-cloth bias sisal (ODCBS)buff. This design consists of two layersof cloth sewn together with one layer ofsisal to make a 12-ply buff of eight pliesof cloth and four plies of sisal.

Spoke Unit, or Finger Buff

Spoke unit or finger-type buffs combinegreat cutting power with the capacityto flex and accommodate contours andallow better workpiece coverage with

Fig. 4. Bias buff (left) versus conventional buff (right). Thread configurations of bias buffs alternate

warp and filler threads. Biasing provides design efficiency by exposing all thread ends to the surface

being buffed, reducing fraying of the fabric.

Fig. 5. Steel clinch ring (left) and steel clinch ring buff

with open center (right). Buffs that are constructed

by the clinch ring or “Iris” machine method have

superior ventilation and cloth biasing, and optimal

material utilization.

fewer buffing heads. Spokeunit or finger-type buffs are made from materialsthat include soft cloth, stiff cloth, sisal,and coated abrasives. The material ismanufactured into units, or fingers,sewn into endless belts, cut to length,wrapped around split drums, and gathered

by an “Iris” machine into steelteeth. The spoke unit or finger sisalbuff is usually made with woven sisalinterlaced with 86/80 cloth. Acid or

rope sisal is sometimes used. The clothmay be mill or dip treated (Fig. 10).The spoke or unit bias buff runs

cooler than standard bias buffs andhas a knee-action flexibility that givessuperior contour-following ability. The width and number of the individual unitsis varied within limits. The range of buff density, or hardness, is varied by choiceof materials, treatments, (buff center size) plies, and type of radial stitching. Somecomplex products are best finished with this type of buff.

FLAP BUFFS

The flap buff (Fig. 11) utilizes separate flap units placed at right angles to thedirection of rotation of the wheel. Each flap supports the other to produce asmooth running wheel. Flap wheels were originally designed for bumper polishingand buffing operations. Flaps are made of coated abrasives, sisal, cloth andcombinations thereof.

POLISHING WHEELS

Polishing wheels are usually made of conventional cloth buff sections glued orcemented together. Canvas disks are cemented to the sides to protect the sewing.Glue or cement is applied to the face. Faces are struck with a pipe at anglesand cross-angles to form a uniform crisscross of cracks on the polishing surfaceand provide sufficient resiliency to allow the wheel to make better contact witha workpiece.Buff sections used to make polishing wheels are generally spiral sewn andmade of various types of cloth, sisal, canvas, or sheepskin. Solid, one-piece woolfelt, and bull neck and walrus hide are occasionally used.Conventional straight buff sections that are glued together may cause streakingduring polishing. An alternative involves inserting pie-shaped segments or

other spacers between the buff sections to result in a “nonridge” polishing wheelthat eliminates streaking. Various abrasive and adhesive combinations are usedto grind, polish, and satin finish. These include liquid, graded aluminum oxideabrasives, greaseless compounds and burring bar compositions.

BUFFING EQUIPMENT

Significant improvements have been made in buff wheels and buffing compoundsto provide consistent and predictable performance. This has helpedmanufacturers of automated buffing machines to develop automated equipmentfor low- as well as high-volume requirements and to minimize labor andoverhead in the finishing operation.

Fig. 6. Cloth bias buffs in order of increased

density from closed face (left to right: 0, 2, 4, 6)

to open face (far right) design.

MACHINE DESIGN

Mechanical buffing systems have a motor-driven shaft to which the buff wheelis applied. In addition, most machines will have a positioning mechanism, afinishing lathe, and workpiece-specific fixtures.

POSITIONING MECHANISM

Automated buffing machines orient parts against the media by mechanicalmethods to duplicate or replace human motions. They rotate, oscillate, tilt, andindex the wheel and/or the workpiece.

Fig. 7. Conventional sisal buff. Fig. 8. Bias sisal buff.

Fig. 9. Open cloth sisal buff. Fig. 10. Spoke unit or finger sisal buff.

Finishing LatheThe finishing lathe is a device located inrelation to the positioning mechanism.It allows a buff wheel to contact one ofmore surfaces of the workpiece at predeterminedlocations.

Fixturing

The workpiece fixture or tooling is used toposition a part during the buffing cycle.Buffing machines can incorporate singleor multiple fixtures. Fixtures can also bedesigned to automatically reorient a workpieceduring the buffing cycle. Buffingfixtures are unique to each part being processed,although some may be adapted to anassortment of similarly shaped parts. Thedesign of fixtures is extremely important.

Unless a part can be fixtured properly at areasonable cost, the economical utilizationof finishing equipment cannot be justified.

TYPES OF BUFFING MACHINES

Buffing machines fall within three broadcategories: manual, semiautomatic, andfully automated.

Manual Machines

Manual buffing machines are used in low-volume applications and applicationsinvolving the buffing of extremely complex workpieces. Manual machines, whenused in conjunction with the proper buff wheel and buffing compound, can bemanipulated.

Semiautomatic Machines

Semiautomatic buffing machines are used in lower volume applications where asingle finishing operation is performed on a variety of parts. Initial investmentand fixturing and operating costs are low.Semiautomatic finishing machines can be used with a single- or double-endlathe. One operator can be employed to load, unload, and operate equipment.Semiautomatic machines hold the workpiece and present it to the buff wheel. Atimed cycle controls dwell and retraction. Only one fixture is required for eachmachine for each type of part finished. Because the machine supports the part,operator fatigue is minimized. Various types of rotation also can be performed,depending on the type of semiautomatic machine selected.Production of semiautomatic buffing machines depends on part configurationand the degree of finishingrequired. By using a double-end jack with two semiautomatics,an operator can load one machine while the other is finishing a part.This can double production without increasing labor costs.

Fully Automatic Machines

Fully automatic machines are used in high-volume applications and where multiplesurfaces of a workpiece must be finished. The two most common types ofautomatic buffing machines are rotary automatic and straight-line machines.

Rotary Automatic Machines

Rotary machines have round tables with finishing heads located around theperiphery of the table. This type of machine is typically used to finish simple,round parts requiring high production. The number of finishing heads andproduction determine the size of the rotary.The table of the rotary machine can move continuously or index to start, stop,dwell, and then start again, with the length of the dwell controlled by a timer.The configuration and area of the product to be finished determine which isbest. Production is higher on a continuous rotary machine because the tabledoes not stop rotating. On an indexing rotary machine, because of the stop,dwell, and start cycle, production is lower. Parts that have surfaces that are difficultto reach and require more dwell time in certain areas may be finished on anindexing rotary machine to obtain the dwell time necessary. On each table thereare rotating spindles on which the parts are fixtured for the finishing sequence.Rotary tables may have a greater number of fixtures than indexing tables, sincethe production and simple configuration make it more appropriate to be runon a continuous machine due to the ease of reaching all surfaces.

Straight Line Machines

There are various types of straight-line automatic finishing machines. Normally,linear workpieces are finished on straight-line machines. Straight-line machinesalso can be used to finish round parts if extremely high production is required.There is less limitation on workpiece size as with rotary equipment.With straight-line automatic machines, finishing heads can be placed on bothsides of the machine. In addition, various heads can be incorporated into thesystem for buffing and polishing. With rotary equipment, the outside peripheryof a rotary table is used.Various types of straight line machines include:Horizontal return straight lineNarrow universal straight lineOver and under universal straight lineReciprocating straight lineOpen-center universalThe size or length of these straight-line machines can be designed and built

to accommodate the desired end result; floor space is the only major limitation.Each machine normally requires only one operator for load/unload. All operationsof these machines are controlled from a push-button panel located nearthe operator for starting, stopping, and controlling various functions.

COMPUTER NUMERICAL CONTROL BUFFING MACHINES

Buffing machine manufacturers can build equipment offering the same levelsof control and flexibility available from computer numerical control (CNC)metal-cutting machines. Separate CNC workcells can be designed to combinebuffing with deburring operations within a given and limited series of processsteps. It also is possible to integrate a complete sequence of manufacturingoperations through a universal, plant-wide parts handling system to combinefabricating, machining, deburring, polishing, buffing, painting, plating, andpackaging. Such systems have a significant impact on material handling costs,daily in-process inventory levels, direct labor costs, plant floor spacerequirements,safety, and overall productivity.CNC buffing systems offer a number of significant advantages. Equipmentis programmed on the shop floor for reduced setup time. Buffing cycles can bereprogrammed to accommodate changing production requirements. Productiondata are automatically collected to support statistical process control requirements.Most important, quality is improved because part-to-part tolerances areconsistent and repeatable.

WORKPIECE HANDLING

Significant advancements have been made in materials handling technologyas it relates to buffing. A broad range of application-specific options is offered.These include pick-and-place workpiece load/unload systems, “blue steel” rollerconveyor systems, lift-and-carry and shuttle-type in-line part transfer systems,trunnion-type transfer tables, power-and-free conveyor systems, robotic worktables,and automated guided vehicles for transferring parts between machines.

SUPPORTING TECHNOLOGY

Buffing systems are increasingly becoming turnkey, integrated installations. Inaddition to the basic machine, equipment builders can offer a variety of supportingsystems to ensure increased performance and improved quality.Electronic options, beyond programmable controllers and computer numericalcontrol systems, include the use of load torque controls, sensors, proximityswitches, encoders, digital read-out devices, laser gauging, and LED programmablecounters. Other supporting systems include quick-change and modularwheel assemblies, automatic tool compensation, automatic buffing compoundapplication systems, dust collection systems, and automatic workpiece shuttleand load/unload systems.

SUMMARYEffective buffing is accomplished through the proper selection of buffing compound,the buff wheel, and the buffing machine. In most instances, it is recommendedthat prototype or test parts be processed under production conditions to establish process parameters and prove production rates and quality.

شات بلاست با دانه های شیشه ای در آبکاری -english

cleaning, pretreatment & surface preparation

IMPACT BLASTING WITH GLASS BEADS

 

BY ROBERT C. MULHALL AND NICHOLAS D. NEDAS

POTTERS INDUSTRIES INC., VALLEY FORGE, PA.; WWW.POTTERSBEADS.COM

Glass beads were originally used for decorative applications. Their use as a mediumin impact blasting came about largely as a result of the aerospace buildup ofthe 1950s. At that time, a need developed for multipurpose media that combinedthe advantages of coarse, organic, metallic, and fine angular abrasives. Table Ishows a comparison of glass beads with other impact abrasives for cleaning,

finishing, peening, and deburring applications.Impact blasting with glass beads is well placed to satisfy demands of the 1990sfor an energy-efficient and environmentally acceptable method of metal finishing.When properly controlled, the system is safe for workers and spent media

presents no disposal problems.

PROCESS BENEFITS

Glass beads are virtually chemically inert. This factor, combined with theirspherical shape, provides several key benefits. Media consumption is minimized;Table II compares consumption data of impacting media on differentmetal surfaces of varying hardnesses. On both metals tested, glass beads offerthe lowest consumption per cycle. In addition, close tolerances are maintainedand glass beads remove a minimal (if any) amount of surface metal.Impacted surfaces are free of smears, contaminants, and media embedments;high points are blended and pores sealed. A wide range of finishes frommatte to bright satin are achievable. The peening action of the media furtheracts to impart a layer of compressive stresses on the surface of the part. Thisincreases fatigue life, decreases susceptibility of the part to stress corrosion,

and enhances surface strength.

PROCESS ENGINEERING

Proper design of impact blasting equipment is essential for each application toachieve the full benefits of high productivity and low costs. Most important,the system should be easily controllable to produce consistent results.Key to this control is determination and maintenance of the “arc heightpeening intensity” of the operation. To measure the peening intensity in a particularapplication, special steel strips are bombarded on one side only by theblasting media. The compressive stress induced by the peening action causesthe strip to bow in the direction of the blast. A series of values of arc heightversus blasting time are obtained, and when plotted on a graph, yield a saturation

curve. From this curve, the arc height peening intensity can be obtained.Environmental factors, operator skill, OSHA standards, and equipmentcapabilities are the process parameters involved in all glass bead blasting operations—whether they are cleaning, finishing, peening, or deburring. Once allthe variables are optimized and the arc height peening intensity determined,process control is achieved by maintaining that arc height peening intensity.Any change indicates some modification in the system operation, away from

optimum performance. System control via arc height peening intensity is applicable to all cleaning,finishing, peening, and deburring operations. In cleaning, the arc heighttechnique can be used to maintain process speed. In finishing, profilometer

measurements of root mean square (rms) microinch finish can be correlatedto peening intensity, thereby eliminating any subjective evaluation of performance.In peening, the degree of compressive stress induced is directly related

to the arc height peening intensity. By such control, significant benefits areachieved in terms of labor productivity, reduced supervision requirements, anddecline in the number of rejected parts.As indicated in Table I, both steel shot and glass beads are available for

peening applications. Steel shot with its heavier density offers a deeper depthof compression, but requires more energy to propel while leaving dissimilarmetallic smears (i.e., various forms of contamination) on the part’s surface.Glass beads are often used as a secondary peening medium, removing contaminationwhile improving surface texture and finish (lower rms) of the part.Glass beads are also used extensively as a peening medium, achieving awide range of arc height peening intensities in a variety of applications andindustries (see Fig. 1).Typical glass bead peening applications take place before plating and aftergrinding and welding on aerospace, automotive, and machine tool components.

KEY FACTORS IN USE OF GLASS BEADS

There are a few key considerations that will help the user to enjoy the benefitsof glass bead impact media to the fullest.Whether for cleaning, finishing, peening, or deburring, the work actuallydone depends upon the amount or weight of abrasive thrown against the

target surface in a given time. It also depends upon the speed with which the

material is thrown against the target. The formula:I = MV2/2indicates that impact energy (I) equals one half the mass or weight (M) times

the square of the velocity (V) at a 90o nozzle angle. Correction factors should beused for other angles.

As a general rule, the smallest particle that will provide the desired effect onthe surface is the most efficient

one to use, as this gives the greatestnumber of impacts per poundof glass spheres.When the nozzle is at a 90oangle to the surface being treated,the bounceback of beads hasa “blinding” effect. This interfereswith the effectiveness of theblast stream and tends to increase

the rate of bead consumptionthrough breakage. Generally, anangle between 45 and 60o will givethe most effective performance. Insome cleaning applications, stilllower angles may help speed thework.The work energy of the flyingparticles is also affected by thedistance from the nozzle to thework surface. It is usually best tokeep this between 4 and 8 in. toavoid loss of velocity, and to gainmaximum acceleration and properdiffusion of particles into themost desirable pattern.

 BEAD CONSUMPTION

Because beads can become broken after repeated impacts on the work surface,controlling bead consumption is of critical importance. It is affected by five keyfactors:

1. Bead size—the larger the bead, the more durable and resistant tobreakage it is at a given impact intensity. This preference for larger beadsmust be balanced against the greater efficiency of smaller size beads, whichare capable of the work required.

2. Uniformity of size—proper sizing also affects efficiency of operations.The wider the range of bead sizes in a particular “charge,” the higher therate of consumption at given conditions.

3. Roundness or sphericity of beads—the more spherical the individualbeads, and the freer the “charge” from nonspherical particles, the lower therate of bead consumption.

4. Surface hardness of material being treated—the harder the surfacebeing treated, the higher the rate of bead consumption.

5. Angle of impingement—the closer to 90o the stream of beads is to thework surface at a given arc height peening intensity, the greater the rate ofbead consumption.

APPLICATION NOTES

Cleaning

Because of the wide variety of different materials that must be removed in cleaningoperations—including mill scale, rust, carbon buildup, and the like—it isoften best to experiment with different nozzle angles to find which works mostefficiently. Where there are internal recesses and other difficult areas, the useof the smaller bead sizes may be particularly helpful. Because a high cleaningspeed usually minimizes labor cost, bead size and nozzle angle are the key considerations.Normally, a velocity that optimizes cleaning speed with a given size

of bead will optimize consumption, to give the lowest total cost.

Finishing

Where appearance is of prime importance, bead size is normally the key consideration.Velocity, nozzle angle, and other factors should be adjusted, first togive maximum finishing speed, and second, to minimize consumption. This willprovide the lowest total labor and material cost per unit of production. As a generalrule, large beads at high intensities provide a deep matte; at low intensitieslarge beads give a smooth, bright surface; small beads at high intensity give a dullmatte, and at low intensities a bright satin. Selective masking of surfaces, the useof multiple nozzles, and a “painting’’ motion may be employed for highly specializeddecorative effects. Automated machines are generally used for finishing.

Peening

Peening to increase fatigue resistance or to increase stress corrosion resistanceis essentially a uniform “hammering” operation. Uniformity of bead size andcontrol of the number of nonround and angular particles included is critical toprocess performance. The key consideration is impact intensity, which must bespecified as minimum and maximum. Nozzle angles should be as close to a rightangle as possible without excess bead consumption. In general, the larger beadsizes, because of their resistance to breakdown, will prove most cost effective.In peening fillet areas, it is a standard rule that beads no larger than one halfthe radius should be used.

Deburring

The key considerations in deburring are usually a combination of programmingsurface finish, while achieving sufficient impact intensity to remove or depress theburr. Bead size, which governs finish, must be adjusted to an adequate peening

intensity with velocity. Proper nozzle angle will optimize consumption

English-تمیز کردن وآماده سازی سطح

cleaning, pretreatment & surface preparation

CLEANING AND SURFACE PREPARATION

BY BRAD GRUSS

PRETREATMENT & PROCESS INC., ASHBY, MINN.

The quality of coatings, regardless of the type, or process of application, varygreatly in terms of quality offered. One statement about pretreatment isbecoming more true every day: “You can make a poor coating perform withexcellent pretreatment, but you can’t make an excellent coating perform withpoor pretreatment!” The point is that today, with the emphasis on qualitycoupled with new technology in coatings (powder, electrocoat, water-based,and high solids), the shift of burden of performance is pointed directly atpretreatment. Having a solid process, which meets or exceeds expectations,must be all encompassing to address soils, metals, water quality, and the process,control, and maintenance of the pretreatment system. Here we provide abroad stroke on the basics, and hope to promote further investigation by our

readers depending on the specifics of each product and their needs. The bestway to begin pretreatment is with a series of questions designed to promoteboth specifics and generalities that have impact on the process.

FINISHER FACT-FINDING QUESTIONNAIRE

1. What base metals are pretreated?

2. What soils are on incoming metals?

3. What soils are applied to metals in-house?

4. What is the production flow of the products?

5. What production assemblies are premanufactured and stored? Dothey corrode in storage? Do the soils age or become more difficult to

remove?

6. What are the physical size limitations of your products? Can they beclassified as to percentage of small or light, medium or large, and heavy

or bulky?

7. How many of what part must be finished per shift?

8. During welding and fabricating are soils entrapped or sandwichedbetween metals?

9. Do you preclean prior to welding? If not, how much carbonaceousresidue is left on or near weldments?

10. Do you physically abrade via wire brush, grind, steel shot, or sandblastthose corroded, carbonaceous areas?

11. If you have weld spatter, does it interfere with finishing?

12. What paint specifications are in-house?

13. What paint specifications do your customers have?

14. Do you currently meet your expectations on production parts?

15. Do your currently purchased coatings meet your specifications onproduction parts?

16. Do your currently purchased coatings meet your specifications on testpanels?

17. What is your current pretreatment process? Does it provide a qualitybase for adhesion and salt spray?

18. What are your current process controls for pretreatment and finishing?Do they get done? Are they logged, recorded, and reviewed?

19. What preventative maintenance steps are taken? Is it by poundage, hours,weeks, or need?

20. What space limitations do you have for expanding pretreatment andfinishing?

21. What are the local, state, and federal laws and regulations for effluentemissions? Do you currently meet these?

22. What safety program do you have? What products can be replaced?What energy sources do you have? What are the limitations?

23. What manpower resources are available?

24. What type of training do you or your vendors offer?

25. What are your financial resources or limitations?

26. What is your competition doing in the marketplace and where do youfit in the market niche? Where do you want to be? What do you have toaccomplish to be there from a finishing perspective?

THE MECHANISMS OF AQUEOUS CLEANING

Wetting: Cleaners contain surface-active agents (surfactants) that “wet out”the soil. This loosens the soil-surface bond by a reduction of surface tension.Wetting is actually the first requirement for soil removal.Emulsification: This occurs following wetting. Simply stated, emulsification isthe dispersion of two mutually immiscible liquids (i.e., oil and water). Primaryfactors affecting emulsification are type of oil encountered and choice of surfactantsused in th cleaner. Secondary factors include pH, temperature, andconcentration of the cleaning solution.Neutralization (saponification): A reaction where in fatty acid soils (oils) are neutralizedin the presence of alkali. The result is generation of water-soluble soapsthat assist in cleaning and rinsing. Examples of fatty oils are vegetable (corn),animal fats (lard), and marine (whole).Solubilization: “Like dissolves like.” This simply means that the solubility of waterinsolublesoils (oil) is increased in the presence of surfactants.Displacement: Soil is displaced from the surface as a result of select surfactantactivity. This is particularly desirable in spray applications where the soil can beremoved using oil-skimming techniques.Mechanical Action: This can greatly increase the speed and efficiency of soil removalin aqueous cleaning systems. It can be accomplished by solution movementor movement of the part itself. Examples include air, impeller, ultrasonic, spray,and gas scrubbing (electrolytic).Sequestration: Water must be properly conditioned or softened in order for effectivecleaning and rinsing to occur. Hard water consists of divalent calcium, magnesium,and iron ions that must be complexed to avoid generation of insolublesthat would otherwise interfere with cleaning and rinsing. In effect, cleaners withadequate sequestering ability obtain better surfactant performance.Deflocculation: A cleaning mechanism whereby soil is peptized or broken downinto very fine particulates and maintained in a dispersive phase to preventagglomeration (coming together).

DETERMINING A CLEAN SURFACE

A clean surface is one that is free of oil and other unwanted contaminants. Thedegree of cleanliness required is dependent on the operation or process towhich the part or product must pass. Manufacturers utilizing the cell cleaningconcept or workstation cleaning are typically cleaning between process steps.Situations like these usually do not require the degree of cleanliness needed forfinal prepaint preparation.

A water break-free surface tells you that you have removed all organic soils. Theparts exiting the last pretreatment or rinse stage prior to drying will show auniform sheeting of the rinse water indicating an organically clean surface.The water break-free surface has been the long-standing test for cleanliness.The key to this test is using fresh uncontaminated rinsewater. Detergent additivesor rinse aids used in a final rinse may hide poor cleaning. Additionallycontaminated rinses due to poor overflow may also mask poor cleaning dueto the surfactant’s wetting ability.A water break surface tells you that you have not sufficiently cleaned and thatorganic soils are still present. The part will exhibit a surface that resembles afreshly waxed car surface after a good rain. There will not be uniform sheetingof the water but beading. Normally, poor cleaning is most often found on ornear weldments, or in areas that receive poor spray impingement to the part.Another test of a clean surface is the white towel test. Wiping a white towel across cleanand dry surfaces will indicate the effectiveness of inorganic soil removal. Check flatsurfaces and those areas most likely not to receive direct spray impingement.In the tape pull test, apply scotch tape to a clean and dry surface, then remove the tapeand place on a white piece of paper. This will also indicate the effectiveness of inorganicsoil removal as the contrast allows for easy identification of remaining soils.The ultraviolet (UV) detection requires soiling with a fluorescent oil, cleaning, and

inspecting under ultraviolet light. The degree of cleanliness can be quantified bya numbering system. This is accomplished through photoelectron emission orreflectance. The higher the reflectance, the cleaner the surface is.

THE IMPORTANCE OF CLEANING

Cleaning of metals and other finishing-related substrates is the single mostimportant consideration to successful coating application. Achieving cleansurfaces has applications throughout a manufacturing facility: for corrosionprotection, for welding operations, for part handling, for part inspection, andfor metal finishing. All of these cleaning applications can and should have aquantitative degree of cleanliness required. The degree can vary from grosssoil removal to a high degree of cleanliness, which surpasses the standardwater-break-free test of cleanliness. The ultimate requirement is dictated bythe requirements of the part, the process, the chemical type, and control ofprocess parameters. With today’s new coatings, a greater emphasis is placedon achieving a totally clean surface.

FACTORS THAT AFFECT AQUEOUS CLEANING

The success of a cleaner relies on more than just the functional chemistry thatcomprises it. Effective cleaner-to-surface contact must be made. A numberof factors must be considered, understood, and properly implemented andmaintained for effective results. Failure to utilize a workable combinationof these factors will often produce marginal results and render the cleaningsystem less effective.

There are several factors that directly impact aqueous cleaning. Because of theirsignificance, each should be addressed: (1) application methods and equipment,(2) history and configuration of part, (3) soil, (4) type(s) of substrate(s), and (5)cleaner selection and operation parameters.

APPLICATION METHODS AND EQUIPMENT

Several questions must be answered in conjunction with the equipment andthe application of the cleaner. The method of and amount of agitation mustbe determined. Chemicals must be selected in either the high-, medium-, controlled-,or low-foam category. More severe agitation or pressure at the nozzle,for example, would place your chemical choice in the least foaming category toprevent excessive foaming.

The temperature range of the process equipment should be known. Cleanerstend to be formulated with surfactants and detergents that offer optimalcleaning within a given temperature range. Typically, low temperature rangesfrom 90¡F to 120¡F, medium temperature ranges from 120¡F to 140¡F, andhigh temperature ranges from 140¡F to 160¡F. The trade-off becomes this. Ifyou are using a cleaner designed for high temperatures, but the equipmentcan only maintain process heat at 120¡F, the chances for poor cleaning andfoaming are present. On the other hand if your chemistry is designed for lowtemperature and the process heat cannot be lowered to that range, you mayexperience stratification of the solution, and in severe cases oiling out of thecleaner’s detergent package.The length of time that the solution is in contact with the part must alsobe decided. Pretesting the parts with the cleaner for the allotted time is alwaysadvised. The process equipment, based on the length of each stage and thespeed of travel, will yield a total contact time. Typically these times for cleanersrange from 60 to 120 seconds; however, many coil lines operate in a range from3–15 seconds. The chemical choice for cleaning should be made only when theprocess contact time is known.History and configuration of the part play a key factor in not only cleanerchoice, but also the application. Multiconfigured parts, for example, may bebest suited for immersion cleaning rather than spray. Usually, machined castings,or parts with ports, threads, extensions, blind holes, etc., are very difficultto clean because the part positioning is typically fixed. In these cases, immersion,or immersion spray combinations, or rotating fixtures may be required.In addition to the configuration of the part, what is the history of the part?Is it a component, finished product, or subassembly? Will it be cleaned once,twice, or more before leaving the factory as a finished product?

Finally, how long may the part be staged, or stored? Will the surface corrodeor tarnish, and will the in-process soil or rust inhibitor adequately protectwithout becoming more difficult to remove if the part is not in a just-in-time,or on a first-in, first-out inventory schedule?

SOIL AND SUBSTRATE AUDIT

Soils

There are many different types of soils used in a manufacturing facility. It isoften assumed that all soils will be easily cleaned.The cleaning operation wouldbe less difficult if all the individual soils were understood more completely.Soils are generally shop dirt, smut, oils, metal chips, and drawing, stamping,and buffing compounds.Upon completion of a soil audit, and the determinationof a suitable cleaner, every effort should be made not to introduce newsoils without pretesting.Soils can be classified as organic or inorganic. Organic soils are oily, waxy films

such as mill oils, rust inhibitors, coolants, lubricants, and drawing compounds.Alkaline cleaners should be used to clean organics. Inorganic soils include rust,smut, heat scale, and inorganic particulate, abrasives, flux, and shop dust. These

inorganic soils are most easily removed by acidic cleaners.Soils can also be classified by the degree of difficulty present in cleaning. Soils

that are very difficult soils to remove include chlorinated lubricants, sulfurizedlubricants, heavy-duty rust-inhibiting compounds, honey oils, buffing compounds,stearates, diecast release agents, and oxidized soils. Those that presenta moderate degree of difficulty include fatty oils, waxy oils, heavy-duty hydraulicoils, mill oils, lapping compounds, and water-displacing rust inhibitors. Lastly,those soils that are relatively easy to clean are soluble oil-cutting fluids, syntheticcutting fluids, spindle oil, lightweight machine oils, mill oils, water-soluble andrust inhibitors, and vanishing oils.The very difficult soils tend to be heat sensitive. Soils falling into the napthenic,paraffinic, chlorinated paraffin blends, or those containing waxes aregenerally heat sensitive to some degree. When you encounter this type of soil,

it limits the variable of temperature. A heat sensitive soil of say 160¡F requires

you to adjust upward accordingly.Specially formulated low-temperature cleaners rely on both soil displacementand slight emulsification. The blend of detergent systems built into thelow-temperature cleaners is designed to reduce surface tension at the soil–metal

interface. This unique factor enables removal of soils sensitive to heat at a lowtemperature; lower than the melting point of the waxes of that soil. This fact alsoproduces less contamination if properly skimmed, resulting in longer tank life.

SUBSTRATES

The composition or chemistry of the base metal is one of the key limiting factorsin cleaner choice. The cleaner must be chosen so as to be compatible withthe metal being processed. In multimetal cleaning lines, nonferrous metalsare typically the limiting factor. With these metals it is important to choose acleaner that either does not attack or overetch the metal and where the attackis controllable or desirable.

A common mistake by both chemical vendors and manufacturers is when abase metal audit is made for cleaner selection, but not done completely. Mostaluminum and zinc alloys with slightly different alloy content can vary widely intheir ability to withstand either alkaline or acidic cleaner attack. In some cases,where minute etch is desirable, slightly more or less is unacceptable.Substrates should be classified to make cleaner choice easier.

1. Ferrous or Iron Bearing: Cold-rolled steel, hot-rolled steel, stainless steel,and ferrous castings.

2. Nonferrous: Aluminum, sheet, coil, castings, extrusions, zinc castings,galvanized, terne plate, and zinc plated.

3. Yellow Metals: Copper and brass.

4. Mixed Metals: Combinations of the above.

5. Composites: Mixtures of metals with other materials.

CLEANER SELECTION AND OPERATING PARAMETERS

Cleaner selection is codependent on the other aqueous cleaning factors discussed.Table I provides alkaline cleaner characteristics and the typical choicerelationship.

POSTCLEANING RINSING STAGES

The purpose of rinsing is to remove or flush the remaining peptized soil, toneutralize the remaining alkaline salts, and to maintain a wet surface priorto entering the subsequent chemical stage. Initial rinsewater quality is veryimportant as the part or product in question will only be as clean as the wateris pure. Deionized or reverse osmosis treated water is used where a high degreeof surface cleanliness is required.

Part configuration, drain vestibules, and adequate time are important considerationsin reducing overall water usage. Table II shows typical cleaner dragoutthat can be expected from various part configurations. Many improvements inrinse stages have been tested and employed to reduce the volumes of effluentto be treated. A common practice is the backflow rinses in a conventional fiveor more stage pretreatment system. The process is as follows:

1. Clean

2. Rinse

3. Phosphate

4. Rinse

5. Seal

Finishing system organizations have introduced unique design improvementsto utilize rinsewater more efficiently and to assist in maintaining rinse cleanliness.Counterflow rinsing provides the cleanest possible water as the last contactwith the part, and allows for multiple use rinse effectiveness.The major control mechanisms for rinse tanks remain the control of pH andtotal dissolved solids (TDS). These tools have been automatically incorporatedinto washers, which allow sensing devices to either increase the overflow rateor reduce or drop TDS by automatic draining, thus maintaining consistency in water quality without regard to part shape, drag-in or drag-out

صفحه1 از4